TensorRT之createInferBuilder

在 NVIDIA TensorRT 中,createInferBuilder() 是用于创建 IBuilder 对象的函数。TensorRT 是一个用于高性能深度学习推理的库,支持在 NVIDIA GPU 上进行加速。

以下是 createInferBuilder() 函数的一般用法:

#include <NvInfer.h>

// 创建 TensorRT 推理构建器
nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(logger);

其中:

  • nvinfer1::IBuilder 是 TensorRT 中的推理构建器接口,用于构建和配置推理引擎。
  • logger 是一个用于记录 TensorRT 操作和错误的日志接口,通常通过 createInferLogger() 函数创建。

具体而言,createInferBuilder() 函数的作用是创建一个用于构建 TensorRT 推理引擎的构建器对象。使用这个构建器对象,你可以配置模型的优化选项、精度、批大小等参数,然后构建一个推理引擎,该引擎可以在 NVIDIA GPU 上进行加速推理。

以下是一个更完整的示例,包括创建 Logger 和设置构建器的一些选项:

#include <NvInfer.h>

// 创建 TensorRT 日志记录器
nvinfer1::ILogger* logger = nvinfer1::createInferLogger(nvinfer1::ILogger::Severity::kINFO);

// 创建 TensorRT 推理构建器
nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(*logger);

// 设置构建器的一些选项,如精度、最大批大小等
builder->setFp16Mode(true);
builder->setMaxBatchSize(32);

// 在使用完毕后,记得释放资源
builder->destroy();
logger->destroy();
### 使用 TensorRT 优化 GFPGAN 的方法 #### 背景介绍 TensorRT 是一种用于高性能深度学习推理的 SDK,能够显著提升模型的推理速度并减少延迟[^1]。GFPGAN 是一款专注于人脸修复的任务型生成对抗网络 (GAN),其特点是能够在低分辨率或损坏的人脸图像上恢复高质量细节[^3]。 然而,在实际应用中,GFPGAN 的推理性能可能会受到复杂架构的影响,尤其是在边缘设备或其他资源受限环境中。因此,通过 TensorRT 对 GFPGAN 进行优化是一种可行的选择。 --- #### 实现步骤概述 以下是基于 TensorRT 和 GFPGAN 高性能推理的具体实现思路: 1. **转换模型至 ONNX 格式** - GFPGAN 默认使用 PyTorch 训练和推理,需先将其导出为 ONNX 格式以便后续加载到 TensorRT 中。 - 导出命令如下所示: ```python import torch.onnx from gfpgan.archs.gfpganv1_arch import GFPGANv1 model = GFPGANv1(...).eval() # 加载预训练权重 dummy_input = torch.randn(1, 3, 512, 512) # 输入张量形状 torch.onnx.export( model, dummy_input, "gfpgan_model.onnx", opset_version=11, input_names=["input"], output_names=["output"] ) ``` 2. **利用 TensorRT 构建引擎** - 基于已有的 ONNX 文件构建 TensorRT 引擎。此过程涉及解析 ONNX 图结构、配置输入尺寸以及设置精度模式(FP32/FP16/Tensor Core FP16)。 - C++ 推理代码示例如下: ```cpp #include <NvInfer.h> nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger); const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); nvinfer1::INetworkDefinition* network = builder->createNetworkV2(explicitBatch); // 解析 ONNX 模型 onnxParser::IParser* parser = onnxParser::createParser(network, gLogger); bool parsedSuccess = parser->parseFromFile("gfpgan_model.onnx", static_cast<int>(gLogger.getSeverity())); if (!parsedSuccess) { std::cerr << "Failed to parse the ONNX file." << std::endl; exit(-1); } // 设置批处理大小和其他选项 builder->setMaxBatchSize(batch_size); ICudaEngine* engine = builder->buildCudaEngine(*network); ``` 3. **动态调整输入尺寸** - 如果需要支持不同分辨率的人脸图片作为输入,则可以通过 TensorRT 提供的 `Profile` 功能来设定动态范围。 - 参考文档说明如何正确指定动态 batch 和宽高[^4]: ```cpp IProfile* profile = builderConfig->addOptimizationProfile(); profile->setDimensions(input_tensor_name, OptProfileSelector::MIN, Dims4{1, 3, 256, 256}); profile->setDimensions(input_tensor_name, OptProfileSelector::OPT, Dims4{1, 3, 512, 512}); profile->setDimensions(input_tensor_name, OptProfileSelector::MAX, Dims4{1, 3, 1024, 1024}); ``` 4. **量化与混合精度推断** - TensorRT 支持 INT8 和 FP16 精度下的高效推理操作。对于 GFPGAN 来说,建议尝试启用半精度浮点数运算以进一步提高吞吐率。 - 启用 FP16 方法: ```cpp builderConfig->setFlag(nvinfer1::BuilderFlag::kFP16); ``` --- #### 性能评估与注意事项 - 经过 TensorRT 优化后的 GFPGAN 应该能在 GPU 上获得更快的速度表现,尤其针对大规模参数模型可达到数十倍加速效果[^2]。 - 不同硬件平台上的实测数据表明,采用 TensorRT 的端到端解决方案不仅降低了延时还节省了内存占用。 最后需要注意的是,尽管 TensorRT 在许多情况下表现出色,但它并不适合所有类型的神经网络层。某些自定义算子可能无法被完全兼容,此时则需要开发额外的插件扩展功能[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Auto_Car6

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值