pandas操作

import pandas as pd
def add_column(df):
    df = df.copy()  # 这里创建了 df 的一个副本
    df['new_column'] = range(len(df))
    # return df
df = pd.DataFrame({'A': [1, 2, 3]})
add_column(df)
print(df)

在这里插入图片描述

import pandas as pd
def add_column(df):
    df = df.copy()  # 这里创建了 df 的一个副本
    df['new_column'] = range(len(df))
    return df
df = pd.DataFrame({'A': [1, 2, 3]})
df = add_column(df)
print(df)

在这里插入图片描述

Python是对象引用传递

传递的是对象的引用:当你将一个变量作为参数传递给函数时,实际上传递的是该变量所指向的对象的引用,而不是对象本身或其副本。

可变对象与不可变对象的区别:

不可变对象(如整数、浮点数、字符串、元组等):由于不可变对象无法修改,函数内部对该对象的任何操作都会创建一个新的对象,原始对象不受影响。
可变对象(如列表、字典、集合等):函数内部对对象的修改会直接影响原始对象,因为它们共享同一个引用。

下面补充例子

例子1
def modify_value(x):
    x += 10
    print(f"Inside function: x = {x}")

a = 5
modify_value(a)
print(f"Outside function: a = {a}")

输出如下

Inside function: x = 15
Outside function: a = 5
例子2
def modify_list(lst):
    lst.append(4)
    print(f"Inside function: lst = {lst}")

my_list = [1, 2, 3]
modify_list(my_list)
print(f"Outside function: my_list = {my_list}")

输出如下

Inside function: lst = [1, 2, 3, 4]
Outside function: my_list = [1, 2, 3, 4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值