- 博客(873)
- 收藏
- 关注
原创 Aphrodite Engine 与 LangChain 的整合实战指南
Aphrodite 是一个开源的大规模推理引擎,支持不同的先进采样方法,并使用 Exllamav2 GPTQ 内核在较小的批次下提高吞吐量。这使得它在 PygmalionAI 网站上的应用非常到位。如果你需要一站式大模型解决方案,我个人一直在用提供的服务,体验非常不错。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~---END---
2025-02-05 13:48:25
235
原创 探索 Weaviate 的 Hybrid Search 功能
在大规模数据处理和快速搜索上,传统的搜索引擎可能会有一定的局限性。为了提高搜索的准确性,Weaviate 提供了一种混合搜索的方法,结合了稀疏向量(比如基于词频的 bm25)和密集向量(语义向量)来更好地理解和处理搜索查询。访问地址:http://localhost:8000模板文档:http://127.0.0.1:8000/docs操作界面:http://127.0.0.1:8000/hybrid-search-weaviate/playground今天的技术分享就到这里,希望对大家有帮助。
2024-12-30 14:32:48
461
原创 深入解析LangChain仓库结构与贡献指南
老铁们,今天我们来聊聊LangChain的仓库结构。如果你打算为LangChain贡献代码或文档,那理解仓库的高层次结构会非常有帮助。LangChain被组织成一个monorepo,里面包含了多个软件包。你可以查看了解更多关于它们如何协同工作。
2024-12-30 12:25:51
373
原创 如何从文本构建知识图谱
老铁们,我们今天要聊的是如何从非结构化文本中构建知识图谱。知识图谱可以作为RAG应用中的知识库,帮助您更好地组织和利用信息。不过在动手之前,先提醒一下,构建知识图谱需要对数据库进行写访问,大家一定要验证和验证数据后才能导入哦~如果想了解更多安全最佳实践,可以查看这里。您也可以通过设置llm=llm,0")0今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-29 19:48:09
408
原创 灵活运用ElasticsearchRetriever进行多模式搜索
Elasticsearch是一个非常流行的搜索引擎,特别适合处理大规模的文本搜索和分析。它的灵活性和强大的查询DSL(域特定语言)让它脱颖而出。而ElasticsearchRetriever则让我们能够充分利用其功能,以一种更加灵活的方式访问Elasticsearch的所有特性。ElasticsearchRetriever不仅在灵活性方面有巨大优势,特别适合需要多种搜索方式的复杂应用场景。此外,在构建更大的应用时,它也可以无缝集成到你的数据管道中,比如说RAG(检索增强生成)应用。
2024-12-29 02:15:47
396
原创 使用 AirbyteStripeLoader 加载 Stripe 数据的深度解析
Airbyte是一个开源的数据集成平台,专注于将 API、数据库和文件中的数据提取到数据仓库和数据湖中。而是专为 Stripe 数据设计的文档加载器,能够将各种 Stripe 对象作为文档加载。不过注意,老版的加载器已经被废弃,建议用替代。说到这里,老铁们应该对如何使用有个大概了解了。尽管这个加载器被废弃,我们还是分享了一些关键技巧和代码示例,希望能帮到大家更加顺滑地处理 Stripe 数据。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-28 04:32:21
227
原创 使用LangChain和DeepInfra进行文本嵌入的实战指南
在自然语言处理任务中,文本嵌入是一个关键步骤。它将文本转化为数字向量,使得我们可以在向量空间中进行各种操作,比如相似度计算、聚类、分类等。而DeepInfra作为一个无服务器推理服务,提供了多种预训练的模型来进行文本嵌入。我个人一直在用DeepInfra这种一站式解决方案,非常便捷且易于集成到各种项目中。如果想深入了解更多关于嵌入模型的使用,可以参考官方文档的嵌入模型概念指南和使用指南。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-27 23:00:47
265
原创 使用LangChain与Ollama模型实现文本补全应用
除了文本交互外,Ollama还支持多模态模型,例如bakllava")说白了就是这么个原理,通过结合文本和图像,我们可以实现复杂的多模态应用。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~---END---
2024-12-27 19:08:37
302
原创 使用Google Cloud SQL for PostgreSQL存储聊天消息历史
先简单介绍一下Google Cloud SQL。它是一个由Google提供的完全托管的关系型数据库服务,支持MySQL、PostgreSQL和SQL Server,并且能够与Google Cloud的其他服务(比如Vertex AI)无缝集成。在我们的例子中,它被用来存储聊天的历史记录。这次我们还展示了如何将聊天历史和Google的Vertex AI聊天模型结合,以实现更强大的功能。!老铁们,今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~
2024-12-27 05:55:26
468
原创 使用LangChain集成Jaguar矢量数据库实战指南
分布式矢量数据库:支持大规模数据的存储与处理。“ZeroMove”水平扩展:这一功能让你在需要时可以瞬间扩展数据库规模。多模态支持:不仅支持文本,还支持嵌入、图像、视频、PDF、音频、时间序列和地理空间数据。全主架构:允许并行读写,大大提高了数据操作效率。异常检测功能:内置的异常检测能力帮助识别数据中的异常。RAG支持:结合LLM实现对专有和实时数据的查询。共享元数据:允许元数据跨多个矢量索引共享。多种距离度量:支持欧几里得、余弦、内积、曼哈顿、切比雪夫、汉明、吉卡德和明科夫斯基等度量。
2024-12-26 11:41:50
373
原创 使用DataForSEO API在LangChain中的应用
DataForSEO是一个提供丰富SEO数据和数字营销解决方案的平台,支持通过API方式进行数据交互。在现代的数字营销和SEO优化中,实时数据的获取和分析是必不可少的。LangChain是一个灵活的编程框架,可帮助开发者在自然语言处理应用中,灵活调用不同工具和API。我个人一直在用DataForSEO提供的数据服务,它在SEO数据获取中确实高效、快捷。特别是在大规模数据分析中能够提供及时的支持。大家在集成过程中,如果有疑问或者遇到技术难题,可以查看官方的API参考文档,或者在社区中寻求帮助。
2024-12-26 06:55:12
472
原创 使用CerebriumAI实现服务器无关的大模型部署
在AI开发中,大模型的部署和调用往往需要大量的计算资源。然而,很多团队可能并没有充足的GPU资源,或者不想在硬件上投入过多。这时候,CerebriumAI 就派上用场了。它为我们提供了API访问,让我们可以在开发中快速接入这些大模型,而无需考虑底层的硬件配置问题。使用CerebriumAI最大的优势在于它的灵活性和无服务器特性。我个人一直在用它来做一些文本生成的工作,效果还是很不错的。如果你也需要大模型的强大功能,不妨试试看。今天的技术分享就到这里,希望对大家有帮助。
2024-12-26 05:14:30
236
原创 深入解析Beautiful Soup:结合langchain实现HTML与XML数据提取
Beautiful Soup是一个Python包,用于解析HTML和XML文档。无论是处理结构良好的标记还是那些不完整的标签(也被称为tag soup),Beautiful Soup都能轻松应对。它通过创建一个解析树来提取HTML中的数据,非常适合用来进行Web Scraping。说到这里,必须提一下langchain社区提供的。这个文档转换工具可以大大简化文档解析流程,支持从HTML/SQL自动化提取所需数据。老铁们,今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~
2024-12-26 04:19:03
404
原创 利用RAG-Chroma-Private实现无API依赖的问答系统
在很多AI应用中,尤其是问答系统,我们需要快速从大规模的数据中检索信息并生成智能响应。通常,这类任务会大量依赖外部API,比如OpenAI的服务。然而,让我们可以完全在本地实现这些功能,从而避免了对外部服务的依赖,提高了系统的自主性和安全性。默认情况下,这个包会在chain.py中创建并添加文档到向量数据库。它会加载一个关于Agents的热门博文,但其实你可以从众多文档加载器中进行选择,这里有详细文档。今天的技术分享就到这里,希望对大家有帮助。遇到问题也可以在评论区交流~
2024-12-25 16:18:43
444
原创 用于信息检索的Chain-of-Note技术在Wikipedia上的实现
Chain-of-Note是什么?说白了就是一种通过"链式笔记"来捕捉和整合信息的技术。这个方法可以帮助我们更好地从复杂的信息源中提取有价值的数据。结合像Wikipedia这样的数据库,这项技术可以用来快速构建知识链条,提高检索效率。API使用:这里我用了一个稳定的API服务来进行Chain-of-Note的链式推理。LangSmith推荐:我个人一直在用LangSmith进行项目的监控管理。虽然不是必须,但它能提供不少帮助。今天的技术分享就到这里,希望对大家有帮助。
2024-12-25 12:38:49
361
原创 如何在LangChain中组合Prompts
LangChain提供了一种用户友好接口,用于将不同部分的prompts组合在一起。你可以通过字符串prompts或聊天prompts来实现这一点。这种结构化的prompt构建方式让组件更具复用性和可维护性。在开发过程中,我曾踩过这样的坑:手动拼接字符串来构建复杂的prompt,结果维护成本极高。说到底,使用这些工具和结构化的方法可以让你事半功倍。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~
2024-12-24 17:51:54
371
原创 构建信息提取链:从非结构化文本提取结构化信息
在今天这个信息爆炸的时代,能从大量的非结构化文本中快速提取有用的信息,真是让人事半功倍的技能。为此,我们需要用到一些支持工具调用(tool calling)的模型。各位老铁要注意,只有支持工具调用的模型才能玩得转这个教程。通过这个教程,我们可以更好地理解如何使用LangChain进行信息提取。想提升提取效果,可以进一步学习如何使用参考例子,以及如何处理长文本等问题。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-24 13:26:01
556
原创 如何将WeChat聊天记录转换为LangChain消息格式
接下来,我们需要定义一个聊天加载器。这里我们基于LangChain实现了一个简单的。) (?
2024-12-24 02:06:16
234
原创 使用LangSmith LLM运行数据进行模型微调的实战教程
老铁们,今天我带大家一起来看看如何直接从LangSmith的LLM运行数据中加载数据,并基于这些数据微调一个模型。完成后,就可以在你的LangChain应用中使用这个微调后的模型啦。
2024-12-24 01:31:52
453
原创 [如何高效地使用GitHub API加载Issues和PRs:以LangChain为例]
通过本文,你应该能够理解如何使用GitHub API来获取仓库的Issues和PRs。GitHub API官方文档LangChain的官方文档和代码库。
2024-12-22 14:12:21
442
原创 探索NVIDIA NeMo嵌入服务:如何用NeMoEmbeddings类连接并提升自然语言处理能力
NeMo嵌入服务为开发者提供了强大的工具集,提升了自然语言处理任务的性能和效率。NVIDIA NeMo官方文档嵌入模型概念指南嵌入模型使用指南。
2024-12-22 06:15:18
292
原创 在本地运行GPT4All进行私密聊天——使用LangChain进行文本嵌入
这种情况通常在库加载过程中发生,通常可以忽略。如果问题持续,请考虑在安全的环境中测试不同版本的库。通过本文,我们了解到如何在本地环境中利用GPT4All进行安全、高效的文本嵌入。LangChain 官方文档GPT4All GitHub 页面Nomic Atlas 文档。
2024-12-22 04:49:30
316
原创 解锁Databricks潜力:如何使用Databricks Embeddings进行嵌入模型集成
Databricks Embeddings是一个能够封装由Databricks Model Serving托管的嵌入模型的类。无论是开箱即用的基础模型、您自己定制的模型、还是外部托管的模型,Databricks都能兼容OpenAI风格的输入/输出格式,从而满足不同应用场景的需求。Databricks API参考嵌入模型概念指南如何使用嵌入模型指南。
2024-12-22 03:53:10
317
原创 探索Prediction Guard:增强LLM功能的秘密武器
Prediction Guard是一种工具,旨在为开发者提供对语言模型输出的更强控制能力。通过Prediction Guard,开发者可以约束输出结构,并尝试新的开放访问模型。Prediction Guard文档Langchain用户指南。
2024-12-22 00:43:14
303
原创 [玩转CTranslate2:高效变压器模型推理指南]
通过本文的介绍,希望你能更好地理解并应用CTranslate2进行高效的Transformer模型推理。CTranslate2 官方快速开始指南Hugging Face Transformers 文档LangChain 使用指南。
2024-12-21 20:26:09
301
原创 [使用LangChain与Clarifai模型轻松实现AI交互!]
通过本文,您应已经掌握了通过LangChain与Clarifai进行模型交互的基本方法。Clarifai 官方文档LangChain 使用指南。
2024-12-21 20:06:44
274
原创 [利用ChatPerplexity开启AI对话新时代:从入门到精通]
通过对ChatPerplexity的学习,我们看到其强大的定制化和应用潜力。
2024-12-21 17:20:00
273
原创 深入探索 ChatAnyscale:AI 语言模型的天际
通过 ChatAnyscale,开发者可以轻松调用强大的AI语言模型,完成文本生成等任务。然而,网络访问和参数调整依然是常见挑战。Chat 模型概念性指南Chat 模型操作指南。
2024-12-21 14:08:09
153
原创 探索Azure OpenAI Chat模型:使用指南与代码示例
Azure OpenAI的聊天模型为开发者提供了强大的工具来创建智能应用。通过这种服务,你可以利用Azure平台的优势,确保模型的稳定运行。Azure OpenAI的官方文档LangChain OpenAI API参考。
2024-12-21 11:17:31
200
原创 使用Google Cloud Bigtable进行高效的聊天信息存储
通过本文,您已经了解了如何使用Google Cloud Bigtable存储聊天信息历史及其相关的Langchain集成。Bigtable不仅仅限于存储聊天记录,还可以应用于大规模数据处理和分析。Google Cloud Bigtable 官方文档Langchain-Google-Bigtable GitHub仓库。
2024-12-21 09:53:02
294
原创 探索Google Places API:从入门到高效应用
Google Places API为开发者提供了强大的功能来访问和处理全球地点信息。在构建地理信息相关应用时,该API不仅能够显著提升用户体验,还能有效帮助您管理和展示地点数据。Google Places API 官方文档Langchain Community 开源工具。
2024-12-21 09:04:32
254
原创 在Google BigQuery中实现高效的向量搜索:使用LangChain和BigQueryVectorStore
通过结合LangChain和Google BigQuery Vector Store,开发者可以轻松构建一个强大的向量搜索系统。
2024-12-21 07:44:00
283
原创 在Google Cloud SQL中利用SQL Server处理Langchain文档的高效方法
我们已经探讨了如何在 Google Cloud SQL 中使用 SQL Server 处理 Langchain 文档的方法。通过这种方法,可以大大简化数据库操作,并帮助构建更加智能的应用程序。有关更多信息,请参考。
2024-12-21 06:34:14
437
原创 使用WandB进行LangChain追踪:最佳实践与实用示例
本文详细介绍了如何在LangChain项目中使用WandB进行追踪。通过设置环境变量和使用上下文管理器,您可以更好地掌控追踪过程。WandB官方文档LangChain GitHub仓库。
2024-12-21 02:10:08
256
原创 [深入探索PubMed API:生物医学研究者的利器]
通过本文,我们了解了如何使用Python工具访问PubMed的文献数据。NCBI API文档LangChain官方文档这些资源将帮助您深入理解PubMed API及其在生物医学研究中的应用。
2024-12-20 21:22:40
412
原创 驾驭PGVector:在LangChain中使用Postgres向量数据库的指南
PGVector是一个强大且灵活的工具,适用于需要高效向量运算的应用场景。通过集成LangChain,你可以在语义搜索等任务中充分利用其能力。- 获取最新的源码和文档LangChain 文档- 了解更多关于集成的细节PostgreSQL 文档- 探索如何优化数据库性能。
2024-12-20 20:36:51
487
原创 [深入探索Neo4j:图形数据库的强大之处]
Neo4j作为图形数据库提供了强大的功能来处理和查询复杂的关系数据。结合强大的查询语言和灵活的API接口,Neo4j非常适合构建需要处理连接性关系的应用程序。更多学习资源可以访问Neo4j官方网站或相关技术论坛。
2024-12-20 19:14:27
288
原创 [轻松解析MediaWiki XML Dumps:安装、使用与代码示例]
解析MediaWiki XML Dumps可能最初看起来复杂,但借助正确的工具和库,处理这些数据会变得更加高效。掌握这些技能也能为更复杂的数据分析任务做好准备。
2024-12-20 17:52:01
298
原创 使用Serper实现智能搜索:掌握Google搜索API在LangChain中的应用
Serper Google Search API为开发者提供了一种高效的方式来获取搜索数据。结合LangChain框架,您可以创建强大的信息检索和问答系统。LangChain 官方文档Google Search API在开发中的应用。
2024-12-20 14:36:52
518
原创 通过DSPy优化生成式AI:构建智能RAG系统
在本案例中,我们将使用DSPy自动编译器和LangChain的表达式语言(LCEL)来构建一个RAG流水线,用于生成推文。DSPy为大规模语言模型的优化提供了一种强大的工具,特别是在RAG流水线中。通过结合LangChain和DSPy,开发者能够构建更智能、更高效的生成式AI模型。建议进一步学习LangChain文档和DSPy文档以深入了解这些工具的使用。
2024-12-20 13:00:42
378
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人