# 使用WandB进行LangChain追踪:最佳实践与实用示例
## 引言
在现代的AI应用开发中,跟踪和分析模型的运行情况变得愈发重要。WandB(Weights & Biases)是一个流行的工具,能够帮助开发者记录、监测和管理机器学习项目的运行日志。本篇文章将讨论如何在LangChain项目中使用WandB进行追踪,包括如何设置和使用环境变量及上下文管理器进行有效的追踪。
## 主要内容
### 1. 环境变量设置
要全局开启LangChain的WandB追踪,只需设置环境变量`LANGCHAIN_WANDB_TRACING`为`"true"`。这将确保无论代码是否在上下文管理器中,所有的代理运行都被追踪。
```python
import os
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
os.environ["WANDB_PROJECT"] = "langchain-tracing"
2. 使用上下文管理器
若只需追踪特定代码块,可使用wandb_tracing_enabled()
上下文管理器。这将仅在该上下文内激活追踪,提供更为精确的控制。
from langchain_community.callbacks import wandb_tracing_enabled