使用WandB进行LangChain追踪:最佳实践与实用示例

# 使用WandB进行LangChain追踪:最佳实践与实用示例

## 引言

在现代的AI应用开发中,跟踪和分析模型的运行情况变得愈发重要。WandB(Weights & Biases)是一个流行的工具,能够帮助开发者记录、监测和管理机器学习项目的运行日志。本篇文章将讨论如何在LangChain项目中使用WandB进行追踪,包括如何设置和使用环境变量及上下文管理器进行有效的追踪。

## 主要内容

### 1. 环境变量设置

要全局开启LangChain的WandB追踪,只需设置环境变量`LANGCHAIN_WANDB_TRACING`为`"true"`。这将确保无论代码是否在上下文管理器中,所有的代理运行都被追踪。

```python
import os

os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
os.environ["WANDB_PROJECT"] = "langchain-tracing"

2. 使用上下文管理器

若只需追踪特定代码块,可使用wandb_tracing_enabled()上下文管理器。这将仅在该上下文内激活追踪,提供更为精确的控制。

from langchain_community.callbacks import wandb_tracing_enabled

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值