使用LangSmith LLM运行数据进行模型微调的实战教程
老铁们,今天我带大家一起来看看如何直接从LangSmith的LLM运行数据中加载数据,并基于这些数据微调一个模型。整个过程其实相当简单,只需要三个步骤:
- 选择要训练的LLM运行数据。
- 使用
LangSmithRunChatLoader
将这些运行加载为聊天会话。 - 微调你的模型。
完成后,就可以在你的LangChain应用中使用这个微调后的模型啦。
开始之前的准备工作
确保你已经安装了langchain >= 0.0.311
,并配置好了你的LangSmith API密钥。
%pip install --upgrade --quiet langchain langchain-openai
同时,设置环境变量:
import os
import uuid
uid = uuid.uuid4().hex[:6]
project_name = f"Run Fine-tuning Walkthrough {
uid}"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "YOUR API KEY"
os.environ["LANGCHAIN_PROJECT"] = project_name
1. 选择运行数据
第一步是选择哪一部分的运行数据用于微调。通常,我们会选择那些获得用户好评的LLM运行。为了这次教程,我将生成一些运行示例供大家使用。
from enum import Enum
from langchain_core.pydantic_v1 import BaseModel, Field
class Operation(Enum):
add = "+"
subtract = "-"
multiply = "*"
divide = "/"