老铁们,今天我们聊聊如何利用LangChain和DeepInfra服务来为文本生成高效的嵌入向量。这波操作可以说是相当丝滑,特别是在需要快速上手和理解的场景中。DeepInfra提供了一种无服务器推理服务,让我们可以轻松访问各种大语言模型和嵌入模型。说白了,这个服务就像是你的AI模型后勤部。咱们直接通过代码来看看怎么用。
技术背景介绍
在自然语言处理任务中,文本嵌入是一个关键步骤。它将文本转化为数字向量,使得我们可以在向量空间中进行各种操作,比如相似度计算、聚类、分类等。而DeepInfra作为一个无服务器推理服务,提供了多种预训练的模型来进行文本嵌入。
原理深度解析
DeepInfra的服务允许我们通过API调用来生成文本嵌入。核心原理是利用预训练的模型,如sentence-transformers/clip-ViT-B-32
,将文本转换为向量表示。然后,我们可以通过计算向量之间的余弦相似度来判断文本的相似度。
实战代码演示
下面是一段实战代码,展示了如何使用LangChain和DeepInfra进行文本嵌入,以及如何计算文本之间的相似度。
# 首先,注册DeepInfra账号以获取访问令牌
# 访问链接: https://deepinfra.com/login?utm_source=langchain
from getpass import getpass
DEEP