- 博客(24)
- 收藏
- 关注
原创 表示学习 & 无监督(变分)自编码器
自编码器神经网络是一种无监督的机器学习算法,它的主要目的是将输入层的数据压缩成较短的格式,我们也可以称为潜在空间(latent space)的特征表示,并通过解码将上述特征解码成与原始输入最为相近的形式。这样我们在使用原始输入图像的时候,就可以使用维度较小的压缩特征经过解码器后进行替代。这听着是不是很熟悉,我们有一个类似的机器学习算法,即PCA做同样的任务。那么为什么我们需要自动编码器呢?
2025-07-16 12:16:14
1001
原创 医学图像处理-数据集&文件格式
https://zhuanlan.zhihu.com/p/661132213https://zhuanlan.zhihu.com/p/620688513https://blog.csdn.net/weixin_46445090/article/details/145458641加载:需要自定义逻辑读取 .bin 文件,并将其中的权重应用到模型结构中。保存:同样需要自定义逻辑将模型的权重保存为 .bin 文件。在格式转换上,由于 .bin 文件是非标准化的格式,因此转换过程需要根据具体的 .bin
2025-07-03 16:56:20
627
原创 PyTorch学习记录十五——导入
全大写的名称通常更多地用于表示常量(特殊的变量),即那些在程序运行过程中不应该被修改的值。比如一些数学常数或者配置文件的配置项等等。类似于如下导入,CONFIGS 很可能是一个变量,通常是一个字典或者配置类的实例。
2025-07-03 16:55:20
193
原创 小提琴图(箱型图&核密度图)
黑色矩形(25%-75%):代表四分位距IQR,即数据中25%-75%的值分布区间,用于衡量数据的离散或集中程度。通过小提琴的胖瘦体现核密度,值越集中,小提琴越窄。值越分散,小提琴越宽。Range(误差线):展示非异常数据的极值范围(正常值的最大值-最小值),反应数据整体波动。Median (白色圆点):表示数据的中位数,是数据分布的中间位置指标。
2025-07-01 11:50:10
308
原创 PyTorch学习记录十四——超参数设置
学习率预热是在整个训练流程中对学习率进行动态调整的一个阶段。在开始的 warmup_steps (这里是 500 步)内,学习率从一个较小的值逐渐增加到预设的初始学习率。这个过程是与模型的参数更新同步进行的,也就是在训练的前 500 步中,模型一边更新参数,一边逐渐提升学习率。那么这个较小的值是怎样得到的?在代码实现里,这个较小值通常会在学习率调度器的实现中被设定。
2025-03-06 18:35:44
505
原创 PyTorch学习记录九——随机数
设置随机种子输出结果如下生成的随机数位于[0.0, 1.0),是53位精度的浮点数。如果不设置随机种子,则每次生成的输出结果不同。如下所示设置一个随机种子print(a)print(b)输出结果如下设置多个随机种子print(a)print(b)输出结果如下此处使用torch.rand()函数作为示例。此函数用于生成具有均匀分布的随机数,这些随机数的范围在[0, 1)间。它接受一个形状参数(shape),返回一个指定形状的张量(tensor)。不设置随机种子。
2025-02-21 11:34:03
1675
原创 PyTorch学习记录六——logging
logging是python的一个标准库,是内置模块,直接import不需要安装,提供了通用的日志系统(包含不同级别),用于记录训练过程、监控模型性能、调试代码,方便实验复现和问题分析。主要用来记录&输出以下内容:1.超参数信息2.训练损失(loss,accuracy,gradient notm)3.验证&测试结果4.模型保存信息5.时间&组员消耗6.异常&预警在训练模型时,通常使用logging模块,或者wandb、tensorboard来记录训练过程。
2025-02-20 22:48:02
1857
1
原创 PyTorch学习记录七——异常处理
在Pytorch中,异常指的是程序运行时可能出现的错误或异常情况,例如数据类型错误、数组越界、内存错误等。Pytorch提供了一些内置的异常类,我们可以通过try语句捕捉这些异常进行相应的处理。
2025-02-20 22:11:37
660
原创 PyTorch学习记录二——tensorboard
运行上述命令后,TensorBoard会在本地启动一个Web服务,通常默认监听6006端口。命令行启动tensorboard,参数指定的是tensorboard应该读取的日志文件夹路径,从这个文件中读取训练过程中生成的日志文件,从而实现可视化。
2025-02-19 10:58:57
254
原创 关于github desktop的基本提交流程与gitignore的使用
【代码】关于github desktop的基本提交流程与gitignore的使用。
2025-02-17 21:17:39
296
原创 关于MedSAM项目的使用说明
4.模型测试:先使用inference.py对测试集的图像进行操作,得到训练出来的模型预测后的分割结果。在终端中输入wandb login,然后粘贴api key,注意粘贴后是不会显示出来的,直接回车就好。训练完成后得到的模型权重文件.pth不能直接用于推理,需要利用ckpy_convert.py将模型训练出来的权重文件转换为参数对应的另一份.pth文件。3.模型推理:MedSAM_Inference.py以及gui.py只能对单张图像进行推理且无法快速保存分割后的结果,从而无法用于模型测试。
2025-02-15 16:11:29
619
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人