Fisher是一种将高维空间映射到低维空间降维后进行分类的方法
1.投影:
对xn→的分量作线性组合可得标量
yn=w⃗ Txn→
什么样的映射方法是好的,我们需要设计一个定量的标准去找w⃗ 来衡量分类的好坏,或者叫做准则函数。
2.基本参量
在d维X空间
各类样本均值向量m⃗ i
mi→=1Ni∑x⃗ ∈Xix⃗ ,i=1,2样本类内离散度矩阵Si和总类内离散度矩阵Sw
Si=∑x∈Xi(x⃗ −mi→)(x
Fisher是一种将高维空间映射到低维空间降维后进行分类的方法
1.投影:
对xn→的分量作线性组合可得标量
什么样的映射方法是好的,我们需要设计一个定量的标准去找w⃗ 来衡量分类的好坏,或者叫做准则函数。
2.基本参量
在d维X空间
各类样本均值向量m⃗ i
样本类内离散度矩阵Si和总类内离散度矩阵Sw