【模式识别】Fisher线性判别

Fisher是一种将高维空间映射到低维空间降维后进行分类的方法

1.投影:

xn的分量作线性组合可得标量

yn=w⃗ Txn

什么样的映射方法是好的,我们需要设计一个定量的标准去找w⃗ 来衡量分类的好坏,或者叫做准则函数。

2.基本参量

  • 在d维X空间

    • 各类样本均值向量m⃗ i

      mi=1Nix⃗ Xix⃗ ,i=1,2
    • 样本类内离散度矩阵Si和总类内离散度矩阵Sw

      Si=xXi(x⃗ mi)(x
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值