OTSU

Segmentation is often considered to be the first step in image analysis.

image segmentation is categorized as Edged based segmentation and region based segmentation.

Based on theory there are two main edge based segmentation methods, gray histogram based and gradient based method

There are different type of the Region based method like thresholding, region growing and region splitting and merging.

There are two types of thresholding methods:

  • Global thresholding

Otsu method is type of global thresholding in which it depend only gray value of the image.

One-dimensional which only consider the gray-level information, it does not give better segmentation result.

This algorithm fails, when the global distribution of the target and background vary widely

Two dimensional Otsu algorithms was proposed which works on both gray-level threshold of each pixel as well as its Spatial correlation information within the neighborhood.

  • Local thresholding

This method divides an original image into several sub regions, and chooses various thresholds T for each sub region reasonably

---------------------------------------------------------------------------------------------------------------------------------------------------

Automatic Thresholding Algorithm Iterative threshold selection Steps:

1 Select an initial estimate of the threshold T. A good initial value is the average intensity of the image.
3. Calculate the mean grey values u1 and u2 of the partitions R1, R2 .
2. Partition the image into two groups, R1, R2 , using the threshold T.
4. Select a new threshold: T=(u1+u2)/2.
5. Repeat steps 2-4 until the mean values and in successive iterations do not change.

---------------------------------------------------------------------------------------------------------------------------------------------------

Reference Papers:
《A Review on Otsu Image Segmentation Algorithm》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值