ML | 3决策树

决策树

决策树一个重要任务是为了理解数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,这些及其根据数据集创建规则的过程,就是机器学习的过程

本章节使用`ID3`算法划分数据集,该算法处理如何划分数据集就,何时停止划分数据集。

划分数据集的最大原则:将无序的数据变得更加有序。

熵定义为信息的期望值,明白这个概念之前,必须知道信息的定义。

如果待分类的事务可能划分在多个分类之中, 则符号 Xi 的信息定义为

l ( x i ) = − l o g 2 p ( x i ) l(x_i) = - log_2 p(x_i) l(xi)=log2p(xi)

其中 $$p(x_i)$$是选择该分类的概率
所有类别可能值包含的信息期望值为:

H = − Σ i = 1 n p ( x i ) l o g 2 p ( x i ) H = - \Sigma^n_{i=1}p(x_i)log_2p(x_i) H=Σi=1np(xi)log2p(xi)

其中,n是分类的数目

计算给定数据集的香农熵

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet: #the the number of unique elements and their occurance
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2) #log base 2
    return shannonEnt

划分数据集

分类算法除了需要知道测量信息熵,还需要划分数据集,度量划分数据集的熵,以便判断当前是否正确划分了数据集。
可以对每个特征划分数据集的结果计算1次信息熵,然后判断按照哪个特征划分数据集是最好的划分方式
按照给定特征划分数据集代码:

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

选择最好的数据集划分方式:

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer

递归构建决策树

从数据集构造决策树算法:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于2个,因此可能存在大于2个分支的数据集划分。

递归结束的条件: 程序遍历完所有划分数据集的属性,或者每个分支下的所有实例都具有相同的分类。如果所有实例具有相同的分类,则得到一个叶子节点或终止块。任何达到叶子节点的数据必然属于叶子节点的分类。

创建决策树:
def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList): 
        return classList[0]            #stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1:       #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree
结果:
myTree:  {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

欢迎关注公众号【三戒纪元】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值