【氮化镓】高输入功率应力诱导的GaN 在下的退化LNA退化

GaN LNA高输入功率应力下的退化机制

2019年,中国工程物理研究院电子工程研究所的Tong等人基于实验与第一性原理计算方法,研究了Ka波段GaN低噪声放大器(LNA)在高输入功率应力下的退化机制。实验结果表明,在27 GHz下施加1 W连续波(CW)输入功率应力后,LNA的增益下降约1 dB,噪声系数(NF)增加约0.7 dB。进一步的测量发现,阈值电压(Vth)的正向偏移导致了增益的下降,而栅极漏电流(Ig)的增加则是NF退化的主要原因。第一性原理计算揭示了Vth偏移和Ig增加的物理机制:在高功率应力下,GaN通道中的VGa-H3复合物发生脱氢反应,形成VGa-H2和氢原子,导致Vth正向偏移;释放的氢原子迁移到AlN势垒中,与VAl-H3复合物结合形成VAl-H4,其缺陷能级作为电子隧穿通道,增加了Ig。该研究的结果对提高GaN LNA的可靠性和稳定性具有重要意义,为优化器件设计、改进材料生长和器件加工工艺提供了理论依据,有助于开发更鲁棒的高性能GaN基无线通信系统。

一、引言

(一)低噪声放大器的重要性

低噪声放大器(LNA)在无线通信系统中扮演着至关重要的角色,它位于接收链路的前端,主要功能是将天线接收到的微弱射频信号进行放大,同时尽可能少地引入噪声,从而确保后续信号处理的质量。其性能直接决定了接收机的灵敏度和信号质量,进而影响整个通信系统的性能表现。

传统LNA多基于砷化镓(GaAs)微波单片集成电路(MMIC)工艺,该工

### LNA 中源极退化电感对增益的影响机制分析 #### 源极退化电感的作用原理 在低噪声放大器 (LNA) 设计中,源极退化电感用于改进电路的稳定性和降低噪声系数。通过引入源极退化电感 \( L_s \),可以在频下提供额外的阻抗路径,从而减少栅极到漏极间的米勒效应引起的寄生反馈[^1]。 #### 米勒效应及其负面影响 米勒效应是指由于栅极和漏极之间存在的米勒电容 \( C_{gd} \),当信号频率增加时,该电容会形成负反馈,导致电压增益下降并可能引起振荡。这种现象不仅降低了最大可用增益,还会影响整个系统的稳定性[^2]。 #### 源极退化电感对增益的具体影响 加入源极退化电感后,其主要作用体现在以下几个方面: - **减小米勒效应**:源极退化电感能够有效地抵消部分由米勒电容带来的不良影响,使得实际工作频带内的增益损失得到缓解。 - **提升最大稳定增益**:适当选择源极退化电感值可使放大器达到更的最大稳定增益(MSG),这对于确保设计的安全裕度至关重要。 - **改变输入输出阻抗特性**:随着源极退化电感的变化,LNA输入和输出端口处呈现给外部网络的有效阻抗也会随之变化,进而间接影响整体增益表现。 为了更直观地理解这一过程,下面给出一段 Python 代码模拟不同参数下的 S 参数计算结果,展示如何利用 Smith 圆图工具评估源极退化电感对增益的影响: ```python import numpy as np from matplotlib import pyplot as plt from skrf import Network def simulate_lna_gain(Ls_values): freq = np.linspace(18e9, 30e9, 501) # Frequency range from 18 GHz to 30 GHz s_params_list = [] for Ls in Ls_values: network = Network() # Define components and connections here... # For simplicity, assume ideal elements # Calculate S parameters based on modified topology including Ls s_param = ... # Placeholder for actual calculation logic s_params_list.append(s_param) return freq, s_params_list if __name__ == "__main__": ls_vals = [1e-9, 2e-9, 3e-9] # Example values of source degeneration inductance in Henry frequencies, gains = simulate_lna_gain(ls_vals) fig, ax = plt.subplots(figsize=(8,6)) colors = ['r', 'g', 'b'] for i, gain in enumerate(gains): ax.plot(frequencies / 1e9, abs(gain), color=colors[i], label=f'Ls={ls_vals[i]*1e9:.1f} nH') ax.set_xlabel('Frequency [GHz]') ax.set_ylabel('|S21| [dB]') ax.legend() plt.show() ``` 此脚本仅作为概念验证框架,在具体实现时需根据实际情况调整元件模型及连接方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北行黄金橘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值