作业作业作业作业作业作业作业作业作业

该代码示例展示了如何使用Java编写MapReduce程序。TokenizerMapper类用于将输入数据分割成单词,每个单词与计数1关联。IntSumReducer类则对Mapper输出的单词计数进行求和,得到每个单词的总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


 public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
 private static final IntWritable one = new IntWritable(1);
 private Text word = new Text();
 public TokenizerMapper() {
 }
 public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, 
InterruptedException {
/* StringTokenizer itr = new StringTokenizer(value.toString()); 
 while(itr.hasMoreTokens()) {
 this.word.set(itr.nextToken());
 context.write(this.word, one);
 }*/
	 String[] arr=value.toString().split(":");
	 Text book_name=new Text(arr[1]);
	 Text book_number= new Text[arr[2];
	 IntWritable grade =new IntWritable(Integer.parseInt(arr[2]));
	 context.write(book_name, grade);
 }
 }
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
 private IntWritable result = new IntWritable();
 public IntSumReducer() {
 }
 public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws 
IOException, InterruptedException {
 /*int sum = 0;
 IntWritable val;
 for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {
 val = (IntWritable)i$.next();
 }
 this.result.set(sum);
 context.write(key, this.result);*/
 int sum = 0;
 IntWritable val;
 for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {
	 val = (IntWritable)i$.next();
	 
 }
 context.write(key, new IntWritable(sum));	 
 }
 }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值