LangChain+ChatGLM做知识库时,参数如何调优(1)

文章讨论了使用大模型时遇到的问题,如内容脑补,解决方法是调整PROMPT_TEMPLATE以避免添加非存在内容。强调了数据质量和切割对模型性能的影响,推荐FAQ格式数据,并提供了文档转换工具。此外,提到了搜索匹配的向量化方法,建议使用OpenAI服务或调整开源方案的相关度参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 第一个经常碰到的典型问题是,大模型在脑补它自己的内容。

    :这个解决方案就是修改prompt模板。调试中发现,需要约束模型在加工匹配后的结果时不要添加不存在的内容。还有就是匹配不到尝试自己回答问题时,应给出提示。测试效果不错

PROMPT_TEMPLATE = """已知信息:{context} 
根据已知信息,找到与问题匹配的答案,只需要简洁的来回答我的问题,不要举例,更不要添加已知信息里不存在的内容。如果在已知信息里匹配不到答案,则通过模型回答问题,并在答案前加上“知识库中找不到答案,我来尝试回答您的问题:”  我的问题是:{question}"""
temperature: float = 0.01
top_p = 0.9

2.除了大模型的问题,更关键的是导入的数据质量及切割

    :导入的数据如果是FAQ的问答是最理想的,这样还可以约束切割符。

 chunk_size=1000,chunk_overlap=200,separator="\n\n"

还有一个chunk_size是约束匹配后的文本块长度的,这个在GLM2扩展后,可以适度设置大些,目前设置500。

这里有个小坑,导入的docx用office的报错,用wps的就可以。所以搞个批量转换函数。

3.搜索匹配

    :涉及向量化。开源的这些对比OpenAI的向量服务,效果会差点。如果不涉及敏感信息,建议用OpenAI的。如果用开源的,相关度参数可以先设置0,后面根据效果再逐步从500往下调。

<think>好的,我现在需要帮助用户了解如何构建本地知识库系统。根据用户提供的引用资料,尤其是引用[3]和[4],系统涉及RAG架构、向量数据库和知识图谱的结合。首先,我得理清构建步骤,确保涵盖数据收集、处理、存储和查询等环节。 首先,用户需要明确本地知识库的基本架构。引用[4]提到经典的RAG架构主要依赖向量数据库,但存在长程关联知识获取不足的问题,因此建议结合知识图谱。所以,我应该分步骤说明如何整合这两种存储方式。 接下来,数据收集与预处理。用户可能需要从多种格式的文件中提取信息,比如PDF、Word、HTML等。这里需要提到文本解析和清洗,比如使用Python的PyPDF2或docx库。然后,分块处理文本,方便后续嵌入生成,这点在引用[3]的代码示例中可能涉及。 然后是向量数据库和知识图谱的构建。向量数据库部分,可能需要使用FAISS或Chroma,结合嵌入模型如BERT或Sentence Transformers。知识图谱方面,需要实体识别和关系抽取,可能需要工具如spaCy或StanfordNLP。这部分需要详细说明两者的结合优势,如引用[4]所述的多模态检索。 接着是查询处理,用户的问题需要同检索向量库和知识图谱,融合结果后生成答案。这里要提到RAG模型的应用,如引用[2]提到的获取新知识的能力,以及引用[3]中的代码示例,比如get_knowledge_based_answer方法。 还要考虑系统优化,比如引用[4]提到的多模态检索和混合增强策略,以及性能调优,比如缓存和并行处理。最后,部署和维护也是关键,使用Docker或云服务,定期更新知识库。 在生成相关问题的候,需要涵盖架构对比、工具选择、挑战和优化等方面,确保用户能深入理解。同,确保回答符合格式要求,使用正确的中文和LaTeX排版,比如独立公式用$$...$$,行内用$...$。最后检查引用标记是否正确添加,确保每个引用来源都对应到用户提供的引用内容。</think>### 如何构建本地知识库系统 #### 1. **系统架构设计** 本地知识库系统的核心是基于**RAG(检索增强生成)架构**,结合向量数据库和知识图谱(KG)实现多模态检索[^4]。基本架构如下: - **数据层**:支持多格式文档(PDF、Word、HTML等)的解析和存储。 - **存储层**: - **向量数据库**:用于存储文本分块的嵌入向量(例如使用FAISS、Chroma)。 - **知识图谱**:存储实体、关系及结构化知识,增强长程关联推理[^4]。 - **检索层**:融合向量相似性检索与图谱逻辑推理。 - **应用层**:集成大语言模型(LLM)生成最终答案。 --- #### 2. **实现步骤** ##### (1) 数据收集与预处理 - **文本解析**: ```python # 示例:使用Python解析PDF(需PyPDF2库) from PyPDF2 import PdfReader def extract_text_from_pdf(file_path): reader = PdfReader(file_path) text = "" for page in reader.pages: text += page.extract_text() return text ``` - **文本清洗**:去除噪声(如HTML标签)、标准化编码。 - **分块处理**:按固定长度(如512 tokens)分割文本,便于嵌入生成。 ##### (2) 向量数据库构建 - **嵌入模型选择**:使用预训练模型(如`text-embedding-ada-002`、Sentence-BERT)。 - **向量化存储**: $$ \text{向量} = \text{Embedding Model}(\text{文本分块}) $$ ```python # 示例:使用Sentence Transformers生成嵌入 from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-MiniLM-L6-v2') embeddings = model.encode(text_chunks) ``` ##### (3) 知识图谱构建 - **实体与关系抽取**:使用NLP工具(如spaCy、StanfordNLP)提取结构化信息。 - **图数据库存储**:将三元组(头实体、关系、尾实体)存入Neo4j或Amazon Neptune。 ##### (4) 查询处理与答案生成 - **混合检索**: - 向量库返回相似文本片段。 - 知识图谱返回关联实体路径。 - **结果融合**:通过LLM(如GPT-4、ChatGLM)综合两类结果生成答案: ```python # 示例:基于LangChain的RAG流程 from langchain.chains import RetrievalQA qa_chain = RetrievalQA.from_chain_type(llm=llm_model_ins, retriever=vector_retriever) answer = qa_chain.run(query) ``` --- #### 3. **关键优化点** - **多模态检索**:结合文本、表格、图像等多类型数据[^4]。 - **性能调优**: - 使用缓存减少重复计算。 - 对长文本采用滑动窗口分块。 - **动态更新**:定期增量更新向量库和图谱。 --- #### 4. **工具与框架** | 组件 | 推荐工具 | |---------------|-----------------------------------| | 文本解析 | PyPDF2、BeautifulSoup、Unstructured | | 向量数据库 | FAISS、Chroma、Pinecone | | 知识图谱 | Neo4j、Apache Jena | | 大模型集成 | LangChain、LlamaIndex | ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ArchAliance

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值