AI-windows下使用llama.cpp部署本地Chinese-LLaMA-Alpaca-2模型

本文档介绍了如何在Windows操作系统下使用llama.cpp部署Chinese-LLaMA-Alpaca-2大语言模型。内容包括环境配置、模型下载、转换量化模型、Anaconda环境安装及运行模型的详细步骤。用户需注册Hugging Face账户,配置SSH,解决SSH连接问题,手动下载LFS文件,并通过特定指令将模型转换为量化格式用于llama.cpp。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Llamp.cpp环境配置

git clone [email protected]:ggerganov/llama.cpp.git
cd llama.cpp
mkdir build
cd build
cmake ..
cmake --build . --config Release

生成的文件在.\build\bin\,我们要用的是main.exebin\main.exe -h查看使用帮助

Chinese-LLaMA-Alpaca-2模型介绍

本项目基于Meta发布的可商用大模型Llama-2开发,是中文LLaMA&Alpaca大模型的第二期项目,开源了中文LLaMA-2基座模型和Alpaca-2指令精调大模型。这些模型在原版Llama-2的基础上扩充并优化了中文词表,使用了大规模中文数据进行增量预训练,进一步提升了中文基础语义和指令理解能力,相比一代相关模型获得了显著性能提升

项目地址https://github.com/ymcui/Chinese-LLaMA-Alpaca-2

模型下载

在这里插入图片描述
我们选择2-7B的版本,进入huggingface:https://huggingface.co/hfl/chinese-llama-2-7b

<think>嗯,用户想在自己的电脑上部署一个本地AI模型,但是他的电脑没有显卡,用的是Intel i7-11700的CPU,而且模型需要支持中文。首先,我需要考虑用户的需求和限制条件。没有独立显卡的话,意味着只能依赖CPU进行推理,所以需要选择那些对CPU支持较好的模型。另外,模型必须支持中文,这可能涉及到模型的多语言能力或者在中文数据上的训练情况。 接下来,我需要确定哪些开源的大模型适合在CPU上运行,并且有良好的中文支持。目前比较流行的模型LlamaAlpaca、ChatGLM、BLOOM等。不过,像Llama这样的模型通常需要较大的内存和计算资源,尤其是在没有GPU的情况下,推理速度可能会比较慢。不过,用户使用的是i7-11700,这是一款8核16线程的CPU,基础频率2.5GHz,最高可达4.9GHz,性能应该还不错,但内存的大小和速度也会影响推理效果,用户可能需要至少16GB的内存,最好是32GB,特别是对于较大的模型。 然后,模型的大小也是一个关键因素。较大的模型如参数量在7B以上的可能需要更多的内存和更长的推理时间,而较小的模型如3B或以下的可能更适合CPU环境。但较小的模型可能在生成质量上有所妥协。需要找一个平衡点,比如ChatGLM-6B的INT4量化版本,可能在CPU上还能运行,但需要检查是否有适合的版本。 另外,用户可能需要使用一些优化库来加速CPU推理,比如llama.cpp、gpt4all或者使用Hugging Face的transformers库结合一些优化技术,如量化、模型分片等。例如,llama.cpp支持将模型转换为GGUF格式,这样可以在CPU上高效运行,并且支持多线程,这对于i7的多核可能会有帮助。 同时,用户可能需要了解如何下载和转换模型,例如从Hugging Face下载模型,然后使用工具进行量化处理,以减少模型大小和提高推理速度。例如,使用llama.cpp中的convert.py将模型转换为GGUF格式,并使用不同的量化级别(如q4_0,q5_0等)来平衡速度和精度。 接下来,安装必要的依赖库,比如llama-cpp-python,这可以让用户在Python中调用转换后的模型。同时,需要确保安装的版本兼容,并且正确配置线程数以充分利用CPU的多核性能。 可能还需要考虑模型的响应时间,如果用户对生成速度有要求,可能需要选择更小的模型或更激进的量化。例如,ChatGLM3-6B的INT4量化版本可能更适合,但需要确认是否支持CPU推理,或者是否有相关的社区支持。 另外,用户可能需要指导如何测试模型,比如提供一个简单的Python脚本示例,加载模型并进行对话测试。同时,提醒用户在遇到内存不足时如何调整模型参数或量化级别。 最后,总结一下推荐的模型和步骤,确保用户能够按照指引顺利部署。可能需要分步骤说明,包括模型选择、环境配置、模型下载与转换、运行测试等,并给出注意事项,比如内存需求、响应时间、模型效果等,帮助用户合理预期结果。</think>部署本地中文AI模型在无显卡的CPU环境(如你的i7-11700)需注意以下关键点,以下是分步指南: --- ### **一、选型建议(CPU友好+中文支持)** #### 1. **推荐模型** - **ChatGLM3-6B-INT4** 清华团队的中英双语模型,6B参数量,INT4量化后可在CPU流畅运行,中文效果优秀。 - **Qwen-1.8B-Chat-INT4** 阿里云的小体积模型,1.8B参数适合CPU,中文对话能力强。 - **Llama-2-Chinese-7B(GGUF量化版)** 社区汉化的Llama模型,需用GGUF格式(如`q4_0`量化)降低资源占用。 #### 2. **备选方案** - **MiniChat** / **MiniCPM**:百兆级小模型,适合快速测试但生成质量有限。 - **BGE-M3**:若需文本嵌入(非生成),适用于检索任务。 --- ### **二、部署步骤(以ChatGLM3-6B-INT4为例)** #### 1. **环境准备** ```bash conda create -n cpu_ai python=3.10 conda activate cpu_ai pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu # CPU版PyTorch pip install modelscope transformers sentencepiece ``` #### 2. **模型下载** ```python from modelscope import snapshot_download model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision="v1.0.0-int4") ``` #### 3. **推理代码** ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).float() # 强制使用CPU model = model.eval() response, history = model.chat(tokenizer, "你好,请写一首关于春天的诗。", history=[]) print(response) ``` --- ### **三、优化技巧** 1. **并行计算** 通过设置`num_threads`参数利用i7-11700的16线程: ```python import torch torch.set_num_threads(16) # 提升推理速度 ``` 2. **内存管理** - 关闭冗余日志:`logging.getLogger("transformers").setLevel(logging.ERROR)` - 使用`del model`释放内存后重载,避免长时间占用。 --- ### **四、注意事项** - **硬件需求** 至少16GB内存(推荐32GB),ChatGLM3-6B-INT4内存占用约6GB。 - **生成速度** i7-11700生成约5-10字/秒,长文本需耐心等待。 - **效果调优** 调整`temperature`(0.1-0.9)和`max_length`参数平衡生成质量与速度。 --- ### **五、替代方案(更低配置)** 若资源不足,可尝试 **Web UI + API调用**: ```bash # 安装简易交互界面 pip install gradio # 修改代码添加Gradio接口 demo = gr.ChatInterface(model.chat, additional_inputs=[gr.Slider(0.1, 1.0, value=0.7, label="Temperature")]) demo.launch() ``` 通过浏览器访问 `http://localhost:7860` 即可交互式使用--- 按需选择模型和优化方式,i7-11700完全能胜任中小模型的中文任务。建议从ChatGLM3-6B-INT4开始测试,再根据实际表现调整。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mrbone11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值