智能客服在银行业务中的效率提升研究
一、研究背景与痛点
传统银行客服中心高度依赖人工坐席,平均人力成本占运营支出的 60% 以上,且存在三大痛点:
- 接通率瓶颈:高峰期排队时长 > 8 分钟,客户满意度(CSAT)跌破 70%。
- 知识更新滞后:新产品上线后,人工坐席平均需要 5–7 天才能熟练掌握。
- 运营可观测性差:质检覆盖率不足 3%,无法及时发现话术风险。
在 AI 技术快速迭代的当下,基于大模型的智能客服(LLM-based Chatbot)成为破局点。本文以某股份制银行信用卡中心的真实数据为蓝本,系统拆解从需求分析、模型微调、RAG 知识库到 AB 实验的全链路落地细节,并提供可直接运行的 Python 代码示例。