MySQL分库分表实战:ShardingSphere在物流订单系统中的落地方案
关键词:MySQL、ShardingSphere、分库分表、物流订单、Snowflake、分布式事务、Spring Boot
目录
- 业务背景与挑战
- 技术选型与整体架构
- 数据建模与分片策略
- 环境准备与建表脚本
- Spring Boot + ShardingSphere-JDBC 集成
- 分布式主键 & 雪花算法落地
- 复杂业务 SQL 改写与测试
- 分布式事务 —— Seata 方案
- 运维:弹性扩缩容 & 灰度方案
- 性能压测与最佳实践总结
1. 业务背景与挑战
某头部物流平台日均订单 800W,峰值 2.2KW。单库单表(t_order
)在 6 亿数据时:
- 写入 RT P99 > 400 ms(索引维护、锁竞争)。
- 大促期间磁盘 I/O 100%,MySQL QPS 天花板 6K。
- DDL 无法在线执行(GH-OST 时长 > 18 h)。
=>