
Matlab超入门指南全册
文章平均质量分 94
限时19.9,即可查阅学习本专栏全部内容。全网最细Matlab零基础手把手入门教程,全栈系列课程包括:基础篇、进阶篇、数据分析篇、可视化篇、实用脚本篇等,适合零基础和进阶提升的同学。(专栏内文章会随时效而更新全文内容,最终会全部更新转化为Matlab高质量知识学习文章,请知悉)
优惠券已抵扣
余额抵扣
还需支付
¥19.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
程序员Gloria
多年实战经验,致力于解决广大程序员的问题,文章内基本都有关键核心代码,欢迎学习。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2025亚太杯中文赛A题建模详解|农业灌溉系统优化模型+完整代码+保姆级教程
在本题中,我们围绕农业灌溉系统的优化,逐步构建了涵盖气象预测、系统布设、旱灾应对与长期调度的完整建模体系。第一问通过回归模型实现土壤湿度的气象预测,为后续灌溉调度提供决策依据。第二问基于作物“存活”需求,在降水数据与湿度动态模拟的基础上,设计了最低成本的喷头布点与引水/储水系统。第三问引入旱灾情景,评估系统鲁棒性,并通过应急储水比例与灾害概率的关系分析,提出了储备水源的合理配置建议。第四问则扩展至作物完整生长期,结合不同阶段的需水差异,检验原有系统能否支撑作物“正常生长”,并通过灌溉方案可视化与系统调整,实原创 2025-07-11 18:09:36 · 465 阅读 · 0 评论 -
自定义MATLAB函数提升代码重用性与可读性的方法与实践
自定义函数是用户根据特定需求编写的MATLAB函数。它们允许程序员将重复的代码块封装为独立的功能模块,以便在不同的场景中重复使用。% 函数说明% 输入参数:% input1 - 描述输入1% input2 - 描述输入2% 输出参数:% output1 - 描述输出1% output2 - 描述输出2% 函数主体% 示例操作% 示例操作end在编写函数之前,需要明确其功能。例如,如果我们需要一个计算矩阵的转置和逆的函数,可以将其定义为。原创 2025-01-25 18:38:56 · 699 阅读 · 13 评论 -
2025美赛B题【可持续旅游管理】(附代码+全保姆教程)Managing Sustainable Tourism
该模型的核心是建立一个多目标优化模型,通过平衡经济、环境和社会因素来实现可持续旅游。变量定义:明确影响旅游业的关键变量。目标函数:设定优化目标。约束条件:定义可行解空间。政策影响:引入不同的税收和政策对模型的反馈影响。敏感性分析:分析关键参数对模型输出的影响。( V ):每日游客数量(人)。( R ):每日旅游收入(美元)。( E ):每日碳排放量(吨)。( C ):每日基础设施维护成本(美元)。( S ):居民满意度(1-10 分)。原创 2025-01-25 03:21:47 · 1040 阅读 · 0 评论 -
2025美赛E题为农业留出空间(附代码+全保姆教程)Making Room for Agriculture
有机农业的核心在于减少化学投入,促进自然控制和可持续性。变量定义CCC: 作物种群III: 害虫种群PPP: 天然捕食者种群(蝙蝠、鸟类等)BBB: 生物多样性水平(以种类数量表示)SSS: 土壤健康指数(影响植物繁殖与作物生长)EEE: 农业生态系统的整体稳定性。原创 2025-01-24 15:29:55 · 1164 阅读 · 0 评论 -
MATLAB图形用户界面(GUI)设计入门
图形用户界面(GUI)是一种允许用户通过图形元素(如按钮、文本框、菜单等)与软件进行交互的界面。在MATLAB中,GUI为用户提供了直观的操作方式,使得数据分析和可视化变得更加简单。MATLAB的图形用户界面(GUI)设计提供了一个强大的工具,使用户能够创建交互式应用程序。通过深入了解事件驱动编程、组件属性、布局管理及响应式设计,您可以创建功能丰富且用户友好的应用。在这个入门教程中,我们展示了如何从零开始构建一个简单的计算器应用,并结合了代码示例和实际操作。原创 2025-01-10 02:19:50 · 869 阅读 · 0 评论 -
利用MATLAB进行高效图像处理-从图像增强到计算机视觉
图像处理是计算机科学和工程中一个重要的领域,广泛应用于医疗、工业、安防等多个行业。MATLAB作为一种强大的数学软件,提供了丰富的工具箱和函数,方便进行图像处理。本篇文章将介绍MATLAB图像处理的基础技术,并结合代码实例进行详细解析。原创 2024-11-21 16:30:56 · 538 阅读 · 0 评论 -
MATLAB中的数据预处理-全面解析从清洗到转换的每个环节
通过上述案例,我们完整展示了MATLAB中数据预处理的全过程。% 读取数据% 数据清洗% 数据转换% 特征工程% 数据拆分% 数据可视化figure;title('训练集价格分布的直方图');xlabel('价格');ylabel('频数');figure;title('房屋面积与价格的散点图');xlabel('房屋面积');ylabel('价格');通过这个案例,您可以直观地看到数据预处理的每一步是如何进行的,以及如何通过可视化来理解数据特征。原创 2024-11-15 22:18:51 · 1037 阅读 · 0 评论 -
MATLAB中的数据可视化:从基本绘图到高级技巧
在绘图时,可以通过设置属性来自定义图形的外观。% 创建数据% 绘制图形并设置属性figure;% 自定义颜色title('指数衰减与正弦波');xlabel('时间');ylabel('幅度');grid on;原创 2024-10-13 17:57:21 · 983 阅读 · 0 评论 -
利用MATLAB进行符号代数求解:高效处理线性方程组
使用syms函数可以定义符号变量。例如,我们可以定义一个符号变量x和ysyms x y使用sym函数可以定义符号矩阵。a21, a22];b = [b1;b2];原创 2024-10-13 19:26:00 · 670 阅读 · 0 评论 -
掌握MATLAB:文件处理与数据分析的最佳实践
在本文中,我们深入探讨了如何使用MATLAB进行文件读取与数据处理的各个方面。从基本的文件读取方法,如文本文件、CSV文件和Excel文件的读取,到数据清洗、分析和可视化,我们展示了MATLAB强大的数据处理能力。我们介绍了进阶的数据处理技术,包括数据归一化、特征选择和时间序列数据处理,进一步提升了数据分析的精确性和效率。此外,结合实际案例,我们演示了如何从读取原始数据到清洗、分析并最终导出结果的完整流程。通过这些示例,读者能够掌握MATLAB在数据处理中的实际应用,增强对数据分析过程的理解。原创 2024-10-13 17:53:49 · 699 阅读 · 0 评论 -
利用MATLAB进行符号计算:从基础到应用
符号计算是指以符号形式处理数学表达式的能力,而不是将其转换为数值。符号表达式的定义与操作方程的符号求解微分与积分符号矩阵运算MATLAB的符号计算功能为数学、工程、物理和经济等领域提供了强大的分析工具。定义符号变量与表达式:利用syms命令创建符号变量,进行各种代数运算,如加法、乘法和简化。求解方程:通过solve函数求解代数方程和方程组,帮助用户找到变量的精确解。微分与积分:使用diff和int函数进行符号微分和积分,支持不定积分和定积分计算。矩阵运算。原创 2024-10-13 18:06:06 · 661 阅读 · 0 评论 -
深入MATLAB:内置函数与自定义函数的全面探讨
自定义函数是用户根据需求编写的函数,可以解决特定的问题。自定义函数的创建使得代码更具可读性和复用性。自定义函数使用function关键字定义,具有明确的输入和输出。% 计算两个数的和end我们可以创建一个自定义函数来计算一个向量的平均值。% 计算向量的平均值end% 使用自定义函数disp(['向量的平均值为: ', num2str(mean_value)]);下面是一个计算矩阵行列式的自定义函数,它将内置函数det封装进来。% 计算矩阵的行列式error('输入必须为方阵');原创 2024-09-29 19:52:08 · 367 阅读 · 16 评论 -
MATLAB编程指南:深入理解条件语句与循环结构
条件语句和循环结构在MATLAB编程中是非常基础而又重要的工具。通过灵活运用它们,可以实现复杂的逻辑处理和数据分析。掌握这些控制结构的使用,可以大大提升程序的灵活性和可读性。原创 2024-09-29 19:45:35 · 147 阅读 · 1 评论 -
MATLAB编程入门指南:从脚本到函数的全面探索
MATLAB脚本是一系列按照顺序执行的命令,保存在一个以.m结尾的文件中。当脚本被运行时,MATLAB将依次执行脚本中的每一行代码。脚本通常用于数据处理、可视化或简单的计算任务。与脚本不同,函数是一个可以接受输入参数并返回输出结果的独立代码块。函数也保存在以.m结尾的文件中,文件名与函数名相同。原创 2024-09-29 19:44:47 · 172 阅读 · 0 评论 -
MATLAB中的矩阵与向量运算详解:从基础操作到工程应用
本文详细介绍了MATLAB中的矩阵和向量运算,从基本的加减乘除到高级的矩阵分解与工程应用。我们通过实例展示了如何在MATLAB中使用矩阵运算来解决实际问题,如线性方程组求解、最小二乘法拟合、动态系统模拟和电路分析等。掌握这些矩阵运算不仅能提升你在MATLAB中的编程效率,还能在工程计算、科学研究中提供有力的支持。希望通过本文的讲解,读者能够更好地理解和应用MATLAB中的矩阵与向量运算。原创 2024-09-25 21:00:26 · 1077 阅读 · 0 评论 -
Matlab 可视化:简单易懂的二维和三维图形绘制方法
patch函数可以用于绘制任意形状的多面体,特别是在需要自定义三维物体的形状时很有用。本文介绍了 Matlab 中绘制二维与三维图形的基本方法,包括曲线图、柱状图、散点图、网格图、表面图、等高线图、多边形填充图、切片图以及矢量场的绘制。通过这些函数,用户可以轻松生成各种图形并进行数据可视化。通过使用rotate3d等工具,用户还可以创建交互式图形,使数据分析更加直观。在实际应用中,用户可以根据需求进一步定制图形,例如添加颜色映射、调整视角、添加注释等。原创 2024-09-25 21:01:29 · 1102 阅读 · 3 评论 -
MATLAB中的基本数据类型与变量操作
MATLAB中的基本数据类型和变量操作是有效使用该软件的基础。主要数据类型包括数值型(如double和single)、字符型(如char和string)、逻辑型、结构体和单元格数组。矩阵操作是MATLAB的核心,包括矩阵的创建、切片、维度操作以及特殊矩阵的生成(如全零矩阵、单位矩阵等)。字符串操作功能强大,支持连接、查找、替换和拆分。逻辑运算和控制结构(如ifswitch语句)允许在程序中进行条件判断和多分支选择。MATLAB还支持通过function。原创 2024-09-20 07:30:00 · 395 阅读 · 0 评论