再见 RAG,你好 Agentic RAG!

大家好,我是玄姐。

正文开始之前,先给我自己打个广告,双12超级活动,原价199元的《3天 AI Agent 智能体项目实战直播训练营》为了回馈粉丝们的支持直接降价到19元今天再开放一天报名特权,仅限99名,按照这个速度,估计一会就能抢完抢完之后立刻涨价到 199 元!

回到正题。

1

再见 RAG

1、RAG 是什么?

检索增强生成(RAG)是一种构建基于大语言模型(LLM)应用程序的技术。它利用外部知识源为 LLM 提供相关上下文并减少虚构内容的产生。

一个简单的 RAG 流程包括检索组件(通常由嵌入模型和向量数据库组成)和生成组件(即 LLM)。在推理时,用户查询用于对索引文档进行相似性搜索,以检索与查询最相似的文档,并为 LLM 提供额外的上下文。

c5781a8913e9ccf5a24ad76947448776.png

典型的 RAG 应用有两个显著的局限性:

  • 第一、简单的 RAG 流程只考虑一个外部知识源。然而,有些解决方案可能需要两个外部知识源,有些解决方案可能需要外部工具和 API,例如网络搜索。

  • 第二、它们是一种一次性解决方案,这意味着上下文只检索一次。对于检索到的上下文的质量,没有进行推理或验证。

2、 Agent 是什么?

随着大语言模型(LLMs)的普及,新的 AI Agent 智能体和多 Agents 智能体系统范式已经出现。AI Agent 智能体是具有角色和任务的 LLMs,它们可以访问记忆和外部工具。LLMs 的推理能力帮助 AI Agent 智能体规划所需的步骤并采取行动来完成手头的任务。

因此,AI Agent 智能体的核心组件包括:

  • LLM(具有角色和任务);

  • 记忆(短期和长期);

  • 规划(例如,反思、自我批评、查询路由等);

  • 工具(例如,计算器、网络搜索等);

    c7e46ee6c8e180cdc742e565922acaa0.png

AI Agent 智能体一个流行的框架是 ReAct 框架。ReAct 智能体可以通过将路由、查询规划和工具使用合并为一个实体,处理顺序的多个查询同时保持状态(在记忆中)。

ReAct = Reason(推理)+ Act(行动)(使用LLMs)

这个过程包括以下步骤:

  • 思考:在接收到用户查询后,AI Agent 智能体推理接下来要采取的行动;

  • 行动:AI Agent 智能体决定并执行一个行动(例如,使用工具);

  • 观察:AI Agent 智能体观察行动的反馈;

  • 这个过程不断迭代,直到 AI Agent 智能体完成任务并回应用户。

0e7044167351fd3d03f295f17ea4feef.png

2

你好 Agentic RAG

1、 Agentic RAG 是什么?

Agentic RAG 描述了一种基于 AI Agent 智能体的 RAG 实现。具体来说,它将 AI Agent 智能体整合到 RAG 流程中,以协调其组件并执行超出简单信息检索和生成的额外动作,以克服非 AI Agent 智能体流程的限制,可以处理复杂的任务。

2Agentic RAG 是如何工作的?

虽然 AI Agent 智能体可以在 RAG 流程的不同阶段被整合,但 Agentic RAG 通常指的是在检索组件中使用 AI Agent 智能体。

具体来说,通过使用可以访问不同检索工具的检索 AI Agent 智能体,检索组件变得具有智能化,例如:

  • 向量搜索引擎(也称为查询引擎),它对向量索引执行向量搜索(例如,典型的 RAG 流程中);

  • 网络搜索;

  • 计算器;

  • 任何 API,用于以编程方式访问软件,例如电子邮件或聊天程序;

  • 等等。

然后,Agentic RAG 可以在以下示例检索场景中进行推理和行动:

  • 决定是否检索信息;

  • 决定使用哪个工具来检索相关信息;

  • 制定查询本身;

  • 评估检索到的上下文并决定是否需要重新检索。

3、 Agentic RAG 的架构设计

与顺序的 Naive RAG 架构相比,Agentic RAG 架构的核心是 AI Agent 智能体。Agentic RAG 架构可以具有不同级别的复杂性。在最简单的形式中,single-agent RAG 架构是一个简单的路由器。然而,你也可以在 mutil-agent RAG 架构中添加多个 AI Agent 智能体。

第一、single-agent RAG 架构设计

在其最简单形式中,Agentic RAG 是一个路由器。这意味着你至少有两个外部知识源,AI Agent 智能体决定从哪个源检索额外的上下文。然而,外部知识源不必仅限于(向量)数据库。你也可以从工具中检索更多信息。例如,你可以进行网络搜索,或者你可以使用 API 从 Slack 频道或你的电子邮件账户中检索额外信息。

a55c42ec09bbf746009be2d0ef4f0b6f.png

第二、multi-agent RAG 架构设计

single-agent RAG 系统也有其局限性,因为它仅限于只有一个 AI Agent 智能体进行推理、检索和答案生成。因此,将多个 AI Agent 智能体链接成一个multi-agent RAG 应用程序是有益的。

1d064bdf33b380ac04da6b94231f3cfc.png

例如,你可以有一个主 AI Agent 智能体,它协调多个专门检索 AI Agent 智能体之间的信息检索。比如,一个 AI Agent 智能体可以从专有的内部数据源检索信息。另一个 AI Agent 智能体可以专门从你的个人账户,如电子邮件或聊天中检索信息。另一个 AI Agent 智能体也可以专门从网络搜索中检索公共信息。

上述示例展示了不同检索 AI Agent 智能体的使用。然而,你也可以使用 AI Agent 智能体来执行除检索之外的其它目的。在 RAG 系统中,AI Agent 智能体的可能性是多样的

4、 Agentic RAG VS RAG

虽然 RAG 的基本概念(发送查询、检索信息并生成响应)保持不变,但工具的使用将其泛化,使其更加灵活和强大。

1bdb223d276a26b1ff9a00a19dfeb956.png

可以这样想:普通的(标准的)RAG 就像是去图书馆(在智能手机出现之前)回答一个特定的问题。而 Agentic RAG 则像是手里拿着一部智能手机,上面有网络浏览器、计算器、你的电子邮件等等。

5、 实现一个 Agentic RAG

如前所述,AI Agent 智能体由多个组件组成。要构建一个 Agentic RAG 流程,有两个选择:具有函数调用的大模型或 AI Agent 智能体框架。这两种实现方式都能达到相同的结果,只是取决于你想要的控制和灵活性。

第一种实现:具有函数调用的大模型

大模型是 Agentic RAG 系统的核心组件。另一个组件是工具,它们使大模型能够访问外部服务。具有函数调用的大模型提供了一种构建 Agentic RAG 系统的方式,允许大模型与预定义的工具交互。大模型提供商已经将这个功能添加到他们的客户端中。

在2023年6月,OpenAI 为 gpt-3.5-turbo 和 gpt-4 发布了函数调用功能。这使得这些大模型能够可靠地将 GPT 的能力与外部工具和 API 连接起来。开发者迅速开始构建应用程序,将 gpt-4 插入代码执行器、数据库、计算器等。

Cohere 进一步推出了他们的连接器 API,以将工具添加到 Command-R 系列模型的套件中。此外,Anthropic 和 Google 为 Claude 和 Gemini 推出了函数调用功能。通过外部服务为这些大模型提供动力,它可以访问和引用网络资源,执行代码等等。

函数调用不仅适用于专有模型。Ollama 为流行的开源模型,比如:Llama3.2、nemotron-mini 等提供了工具支持。

要构建一个工具,你首先需要定义函数。在这个代码片段中,我们正在编写一个使用 Weaviate 的混合搜索从数据库中检索对象的函数:

def get_search_results(query: str) -> str:
    """Sends a query to Weaviate's Hybrid Search. Parses the response into a {k}:{v} string."""
    
    response = blogs.query.hybrid(query, limit=5)
    
    stringified_response = ""
    for idx, o in enumerate(response.objects):
        stringified_response += f"Search Result: {idx+1}:\n"
        for prop in o.properties:
            stringified_response += f"{prop}:{o.properties[prop]}"
        stringified_response += "\n"
    
    return stringified_response

然后,我们将通过一个 tools_schema 将函数传递给大模型。这个模式随后被用于大模型的提示词中:

tools_schema=[{
    'type': 'function',
    'function': {
        'name': 'get_search_results',
        'description': 'Get search results for a provided query.',
        'parameters': {
          'type': 'object',
          'properties': {
            'query': {
              'type': 'string',
              'description': 'The search query.',
            },
          },
          'required': ['query'],
        },
    },
}]

由于您是直接连接到大模型 API,因此您需要编写一个循环,用于在大模型和工具之间进行路由:

def ollama_generation_with_tools(user_message: str,
                                 tools_schema: List, tool_mapping: Dict,
                                 model_name: str = "llama3.1") -> str:
    messages=[{
        "role": "user",
        "content": user_message
    }]
    response = ollama.chat(
        model=model_name,
        messages=messages,
        tools=tools_schema
    )
    if not response["message"].get("tool_calls"):
        return response["message"]["content"]
    else:
        for tool in response["message"]["tool_calls"]:
            function_to_call = tool_mapping[tool["function"]["name"]]
            print(f"Calling function {function_to_call}...")
            function_response = function_to_call(tool["function"]["arguments"]["query"])
            messages.append({
                "role": "tool",
                "content": function_response,
            })
    
    final_response = ollama.chat(model=model_name, messages=messages)
    return final_response["message"]["content"]

您的查询将会是这样的:

ollama_generation_with_tools("How is HNSW different from DiskANN?",
                            tools_schema=tools_schema, tool_mapping=tool_mapping)

第二种实现:AI Agent 智能体框架

AI Agent 智能体框架,比如:DSPy、LangChain、CrewAI、LlamaIndex 和Letta 已经出现,以促进使用大模型构建应用程序。这些框架通过插入预构建的模板简化了构建 Agentic RAG 系统的过程。

  • DSPy 支持 ReAct AI Agent 智能体和 Avatar 优化。Avatar 优化描述了使用自动化提示词工程来描述每个工具的过程。

  • LangChain 为使用工具提供了许多服务。LangChain 的 LCEL 和 LangGraph 框架进一步提供了内置工具。

  • LlamaIndex 进一步引入了 QueryEngineTool,这是一组用于检索工具的模板。

  • CrewAI 是开发多 AI Agent 智能体系统的领先框架之一。用于工具使用的一个关键概念是在 AI Agent 智能体之间共享工具。

  • Swarm 是 OpenAI 构建的一个用于多 AI Agent 智能体协调的框架。Swarm 同样关注如何在 AI Agent 智能体之间共享工具。

  • Letta 接口反映并完善内部世界模型作为函数。这包括潜在地使用搜索结果来更新聊天机器人用户的 AI Agent 智能体记忆,以及回答问题。

6、 企业为啥采用 Agentic RAG 架构设计?

企业正在从传统的 RAG 转向构建 Agentic RAG 应用程序。Replit发布了一个帮助开发者构建和调试软件的 AI Agent 智能体。此外,微软宣布了协同用户完成任务并提供建议的副驾驶系统。这些只是生产中 AI Agent 智能体的几个例子,可能性是无限的。

Agentic RAG 的优点

从传统 RAG 转向 Agentic RAG 使得这些系统能够产生更准确的响应,自主执行任务,并与人类更好地协作。

Agentic RAG 的主要优点在于提高了检索到的额外信息的质量。通过添加可以访问工具使用的 AI Agent 智能体,检索 AI Agent 智能体可以将查询路由到专业的知识源。此外, AI Agent 智能体的推理能力使得在进一步处理之前,可以对检索到的上下文进行一层验证。因此,Agentic RAG 流程可以导致更健壮和准确的响应。

Agentic RAG 的局限性

然而,每枚硬币都有两面。使用 AI Agent 智能体执行子任务意味着将 LLM 整合到任务中。这在任何应用程序中使用 LLM 都会带来局限性,比如增加的延迟和不稳定性。取决于 LLM 的推理能力, AI Agent 智能体可能无法充分完成一个任务(甚至根本无法完成)。重要的是要整合适当的故障模式,以帮助 AI Agent 智能体在无法完成任务时摆脱困境。

总之 AI Agent 智能体如此重要,人人都需要掌握的核心技能!为了帮助你快速学习、理解、掌握和实践强大的 AI Agent 智能体技术,我们特别邀请了多位业内顶尖专家,精心打造了一套企业级项目实战的《3天 AI Agent 项目实战直播训练营》!直播课程涵盖从基础理论到实际项目部署的全方位知识体系,助力你在激烈的职场竞争中脱颖而出。

原价199元的《3天 AI Agent 智能体项目实战直播训练营》双12超级活动为了回馈粉丝们的支持,直接降价到19元就开放今天一天报名特权,限99名,按照这个速度,一会就能抢完抢完立刻涨价到 199 元!

3

3天 AI Agent 智能体项目实战直播课

3天的直播课,阿里P9级大佬带你快速掌握 AI Agent 智能体核心技术和企业级项目实践经验。

第一天:AI Agent 智能体技术原理篇

全面拆解 AI Agent 智能体技术原理,掌握 AI Agent 智能体三大能力及其运行机制。

第二天:AI Agent 智能体应用开发实战篇

深度讲解 AI Agent 智能体技术选型及开发实践,具备开发 AI Agent 智能体核心技术能力。

第三天:AI Agent 智能体企业级案例实战篇

从需求分析、架构设计、技术选型、资源规划评估、代码落地、服务治理等全流程落地实战,深度学习企业级 AI Agent 智能体项目流程级重点难点问题解决。

e7c700d5d3900936f96436c0e7b5f64f.png

47912fa37dc0e7051f5123ca6ce23335.png

3天时间,你能学会什么?

在真实项目实践中,获得以下能力:

第一、全面了解 AI Agent 智能体的原理、架构和实现方法,掌握核心技术精髓。

第二、熟练使用 Dify/Coze 平台和 LangChain 开发框架,为未来的技术实践打下坚实基础。

第三、通过企业级项目实战演练,能够独立完成 AI Agent 智能体的设计开发和维护,提升解决实际问题的能力。

第四、为职业发展提供更多可能性,无论是晋升加薪还是转行跳槽,提升竞争力。

限时优惠:

原价199元,双12超级活动,现在报名只需19元!这是一个难得的机会,让我们一起踏上 AI Agent 智能体技术之旅,开启技术新纪元!

4

我为什么推荐这门课给你?

第一、大厂都在战略布局的方向,不管是国外的微软、谷歌,还是国内的百度等大厂都在战略布局,2025年必定是 AI Agent 智能体大爆发的一年。

6e4b4b50f9425fba1a87efae4e4ed6e4.png

第二、这是大势所趋,我们正在经历一场重大技术变革,还不像当年的互联网的兴起,这是一场颠覆性的变革,掉队就等于淘汰,因为未来所有应用都将被 AI Agent 智能体重写一遍。

8e06b323f516a2af6b2339210870d2cb.png

第三、现在处于红利期,先入场的同学至少会享受4~5年的红利,拿高薪,并且会掌握更多的资源。

839cb7fcd759327526abde37d5425156.png

第四、企业需求旺盛,越来越多的企业开始在 AI Agent 智能体领域进行创新尝试,这为我们提供了丰富的岗位机会和广阔的发展空间。

6459849df604ef09827ba6e648698b8b.png

最近两年一直在落地大模型企业级应用,大模型的价值太大了,AI Agent 智能体的潜力太大了,“未来所有应用都将被 AI Agent 智能体重写一遍”这句话也是今天听到最多的一句话。我的团队这两年,尤其是今年接了很多开发 AI Agent 智能体的项目,越来越多的企业都开始做这方面的创新落地。

AI Agent 智能体足够重要,但也足够复杂,我这两年的实践结论是,想开发出一个能够可靠稳定的 AI Agent 智能体应用实在太难了,大模型技术本身的复杂度,大模型推理的不确定性等等,这些困难直接导致很多人对其望而却步,或是遇到问题无从下手。一般的技术同学想要自己掌握 AI Agent 智能体太难了。

为此我特意打造了一个为期3天的 AI Agent 智能体企业实战训练营:

d9e87557d976281e0e1c482140b1d571.png

课程原价199元双12超级活动,现在仅花19元就能拿下!抢完立刻恢复199元!

5

今天报名再送4个专属福利

福利一:AI Agent 智能体训练营配套学习资料,包括:PPT 课件、实战代码、企业级智能体案例和补充学习资料。

99ef1971fe5d8719e81985473adbe1e1.jpeg

福利二:AI Agent 智能体训练营学习笔记包含3天直播的所有精华

85adb43f22d310199c410bf7db1d465d.jpeg

福利三AI Agent 智能体大厂面试真题100道!覆盖百度、阿里、腾讯、字节、美团、滴滴等大厂的100道真题,不论是跳槽还是升职加薪,参考意义都重大!

6ea95109a6cef515986fa3b5fd2909ca.jpeg

福利四2024年中国 AI Agent 智能体行业研究报告!AI Agent 智能体是新的应用形态,大模型时代的“APP”,技术范式也发生了很大的变化, 此份研究报告探索新一代人机交互及协作范式,覆盖技术、产品、商业、企业落地应用等方面,非常值得一读!

f2a878685882f6a35ad1bb007b9faf5e.jpeg

187cdd40994ccf0f2de386e73f35dd5c.gif

双12超级活动,原价199元,现在19元就能拿下!

报名完添加下述助教二维码,立刻领取4重福利

6

添加助理直播学习

购买后,添加助理进行直播学习👇

6f78879709cad204b3486275f371691f.jpeg

参考:

https://weaviate.io/blog/what-is-agentic-rag

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值