numpy切割数据

import numpy as np
import os
import glob
import SimpleITK as sitk
import matplotlib.pyplot as plt


img = sitk.ReadImage(r'C:\Users\320133514\Desktop\222.nii.gz')
img = sitk.GetArrayFromImage(img)
#print(img)
# print(img.shape)
# print(type(img))
# print(img.ndim)

# print(img[0:24, 50:370,0:320])
img2 = img[11:35, 0:320, 100:420]
print(img2)
print("img2.shape:",img2.shape)



out = sitk.GetImageFromArray(img2)
sitk.WriteImage(out,r'C:\Users\320133514\Desktop\3201.nii.gz')
print("ok")
img3 = sitk.ReadImage(r'C:\Users\320133514\Desktop\3201.nii.gz')
img3 = sitk.GetArrayFromImage(img3)
print("img3.shape:", img3.shape)
print(img3.ndim)

#
# dataname_list = os.listdir(data_path)
# dataname_list.sort()
# ori_data = sitk.ReadImage(os.path.join(data_path, dataname_list[2]))  # 读取一个数据
# data1 = sitk.GetArrayFromImage(ori_data)  # 获取数据的array
# print(dataname_list[2], data1.shape, data1[38,255,255])  #打印数据name、shape、某一个位置的元素的值(z,y,x)
#
# plt.imshow(data1[100,:,:]) # 对第100张slice可视化
# plt.show()

读取数据,并将数据保存为二进制文件,文件大小为32032024*4(float32)

import pickle
import numpy as np
import SimpleITK as sitk
#
img3 = sitk.ReadImage('320.nii.gz')
a = sitk.GetArrayFromImage(img3)
print("a.dim:",a.ndim)
print(a.shape)
print(type(a))
print(a.ndim)
#
a.tofile('new320nnunet.bin')
# print("a.shape:", a.shape)
#
# # print(a_.shape)
# # print(type(a_))
# # print(a_.ndim)
a_ = np.fromfile('new320nnunet.bin', dtype=np.float32)
a_.shape = 24, 320, 320
print(a)

print(a_.shape)
print(type(a_))
print("a_.ndim:",a_.ndim)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fly*Boy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值