YOLO11解决方案之使用 Streamlit 应用程序进行实时推理

概述

Ultralytics提供了一系列的解决方案,利用YOLO11解决现实世界的问题,包括物体计数、模糊处理、热力图、安防系统、速度估计、物体追踪等多个方面的应用。

Streamlit 使构建和部署交互式网络应用程序变得简单,将其与Ultralytics YOLO11 结合使用,可以直接在浏览器中进行实时对象检测和分析。YOLO11 的高精度和高速度确保了实时视频流的流畅性能,能够帮助用户快速分析视频流。

Ultralytics提供了CLI和Python例子,展示如何使用实时推理解决方案。

CLI:

yolo solutions inference

yolo solutions inference model="path/to/model.pt"

Python:

from ultralytics import solutions

inf = solutions.Inference(
    model="yolo11n.pt",  # you can use any model that Ultralytics support, i.e. YOLO11, or custom trained model
)

inf.inference()

# Make sure to run the file using command `streamlit run path/to/file.py`

运行演示

创建应用程序

我们可以创建python程序,名称为:test_inference.py,然后在命令行中运行:

streamlit run test_inference.py

如果系统中没有安装streamlit,则程序将自动安装。

运行后,streamlit将创建web server,运行在8501端口。程序将自动在浏览器中打开页面:http://localhost:8501

请添加图片描述
视频源可以是webcam或者视频文件。

打开video文件演示

在左侧菜单video选择"video",则下面会显示出“Browser files”选项,可以点击打开视频文件。
在这里插入图片描述

点击下方的“Start“将开始运行。点击运行界面下方的”Stop"将停止运行。
在这里插入图片描述
可以修改使用的模型,例如修改成yolo11n-seg:

在这里插入图片描述
若要修改检测类别,在Classes中选择即可:
在这里插入图片描述

使用自己的模型

当然,也可以使用自己训练的模型进行测试,需要修改代码,然后运行程序:

from ultralytics import solutions

inf = solutions.Inference(
    model="best.pt", 
)

inf.inference()

在这里插入图片描述
注意事项:如果是用户自行训练的模型,则需要明确指定文件所在的路径,否则将报错。如果是Ultralytics预训练的模型,如果没有在运行目录,程序将自动下载,如果下载失败,将报错。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值