决策引擎简介-和规则引擎的区别
相信您在搜索规则引擎相关资料的时候经常遇到这个词:决策引擎。
前文中,我们介绍了规则引擎的优势和应用场景。随着技术发展,人们需要在越来越复杂的场景中应用规则引擎。于是,规则引擎随之进化,诞生了决策引擎。
本文将简单介绍决策引擎,并比较它和“传统”规则引擎的区别。
介绍
决策引擎是一种软件系统。它使用各种算法,将决策的流程自动化。以此,决策引擎能够高效地做出准确一致的决策。与规则引擎类似,决策引擎也将复杂的决策流程提取出来,以便编辑和更新,也方便了非技术人员维护决策流程。
相比规则引擎,决策引擎是一个更高级、更先进的系统。
比较
定义
从定义上来说,“规则”是规则引擎的功能,“决策”是决策引擎的目的。
规则引擎就是能够管理规则的系统。管理规则是它最核心的功能,但这并没有说明它的应用。这些规则能干什么?我该在哪里使用规则引擎?这些都需要您自己去探索。
决策引擎的名字则说明了它的作用:做决策。无论内部有什么功能,最终呈现出来的结果就是能够做决策。
包含范围
规则引擎是决策引擎的子集,所有的决策引擎都包含了规则管理的功能。只用规则引擎做决策固然可行,但也会有很多局限。因此,决策引擎扩展了规则引擎,加入了更多逻辑,而非局限于“if…else…”形式的规则。
结构
决策引擎大致可分为两层:
- 实现各功能或逻辑的模块
- 将模块组合在一起的决策流
模块
1. 规则
最简单的if…else…逻辑,以此为基础可以构建更复杂的逻辑结构。当然,实际生产中,往往会用更直观的结构来表达复杂的规则包
2. 决策表
使用多个条件判断组合成一张表,适用于多种情况的判断
条件1 | 条件2 | …… | 结果1 | 结果2 | …… | |
---|---|---|---|---|---|---|
分支1 | a | b | 操作a | 操作b | ||
分支2 | c | d | 操作c | 操作d | ||
…… |
3. 决策树
将多个规则以树状结构组合
4. 评分卡
根据条件计算评分,再根据评分的不同输出不同结果
以上模块都可以用最基础的规则构建。一般的规则引擎中也存在类似的算法。
5. AI模型
将输入的条件作为ai模型的输入,根据输出执行对应操作。使用ai可以完成非常复杂的判断。
有了ai的赋能,决策引擎的功能也变得日益强大。
6. 代码块
用于自定义逻辑
决策流
有了这些模块,我们可以将它们结合在一起,形成一个完整的决策流程。
总结
决策引擎是规则引擎的母集,也是它的“进化形态”。决策引擎的优势与规则引擎相似,而又比规则引擎有更强大的功能和更广泛的应用场景。
决策引擎可以帮助企业提高效率、减少人为错误、加快决策速度以及更好地应对市场变化。随着大数据和人工智能的发展,决策引擎变得越来越智能化和复杂化,成为现代企业和组织不可或缺的一部分。