认识神经网络:卷积,归一化,优化和语料

本文深入探讨了神经网络中的卷积和归一化技术,包括卷积的定义、实现和计算复杂度,以及不同类型的归一化方法如Batch Normalization、Layer Normalization和Instance Normalization。文章还讨论了优化技术,如梯度下降法,并强调了归一化在深度学习模型训练中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

一个基于神经网络模型的视觉模型中,卷积归一化层是最为耗时的两种layer。卷积数据计算密集类型,今年来大量的优化主要集中在各种设备上的卷积加速。
归一化层通过计算一个批量中的均值与方差来进行特征归一化。众多实践证明,它利于优化且使得深度网络易于收敛。批统计的随机不确定性也作为一个有利于泛化的正则化项。BN 已经成为了许多顶级计算机视觉算法的基础。添加归一化层作为提高算法性能的很好的一种策略,但由于像BN遭受数据同步延时的问题,现在逐渐被一些新的normalization方式所替代。

卷积

认识卷积

卷积定义

h ( x ) = f ( x ) ∗ g ( x ) = ∫ − ∞ + ∞ f ( t ) g ( x − t ) d t h(x) = f(x)*g(x) = \int_{ - \infty }^{ + \infty } {f(t)g(x - t)dt} h(x)=f(x)g(x)=+f(t)g(xt)dt

f ( t ) f(t) f(t)先不动, g ( − t ) g(-t) g(t)相当于 g ( t ) g(t) g(t)函数的图像沿y轴(t=0)做了一次翻转。 g ( x − t ) g(x-t) g(xt)相当于 g ( − t ) g(-t) g(t)的整个图像沿着t轴进行了平移,向右平移了x个单位。他们相乘之后围起来的面积就是 h ( x ) h(x) h(x)

离散卷积的定义

h ( x ) = f ( x ) ∗ g ( x ) = ∑ τ = − ∞ + ∞ f ( τ ) g ( x − τ ) h(x) = f(x)*g(x) = \sum_{\tau = -\infty}^{+\infty}f(\tau)g(x-\tau) h(x)=f(x)g(x)=τ=+f(τ)g(xτ)

其实,深度学习中的卷积对应于数学中的cross correlation. 从卷积的定义来看,我们当前在深度学习中训练的卷积核是翻转之后的卷积核

下面是一些介绍卷积的文章和常见卷积类型统计表:

Convolution Name 参考文献 典型代表 附录
Convolution AlexNet, VGG
1x1 Network in Network GoogLeNet, Inception (1). Dimensionality reduction for efficient computations;
(2).Efficient low dimensional embedding, or feature pooling;
(3). Applying nonlinearity again after convolution
Dilated convolution Multi-Scale Context Aggregation by Dilated Convolutions 语义分割 support exponentially expanding receptive fields without losing resolution or coverage. Upsampling/poolinglayer(e.g. bilinear interpolation) is deterministic. (a.k.a. not learnable);
内部数据结构丢失, 空间层级化信息丢失;
小物体信息无法重建 (假设有四个pooling layer则任何小于 2 4 = 16 2^4=16 24=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值