
机器学习,深度学习
灰灰渔渔爱吃鱼
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
python list的::访问和易出错的[::-1]
list[param1:param2:param3],遇到param为负数时容易理解错误。这个结果等价于下面这个函数。>>> def listColonColon(list, param1, param2, param3=1):... begin = param1 if param1 is not None else 0 if param3 > 0 else len(list) - 1... end = param2 if param2 is not N原创 2021-05-11 19:31:33 · 385 阅读 · 0 评论 -
使用DistrbutedDataParallel时,nvdiai-smi显示每个进程都占用GPU:0
使用mp.spawn(main, nprocs=args.num_gpus, args=(cfg, args,))和torch.nn.distributed.DistrbutedDataParallel时出现显卡在用torch.load加载预训练模型或恢复训练时必须指定放在哪个GPU上,否则默认是每个进程都会在GPU:0 上占一块空间,用来存放恢复数据,而且很大。nvidia-smi的结果中可以看到0号显卡上会有每个进程的编号。nvidia-smi结果错误做法:checkpoint .原创 2021-01-14 20:39:54 · 455 阅读 · 0 评论 -
python中os模块的常见处理函数
os.work函数:import osfor i in os.walk('c:'+os.sep+'ant'): print i[1] 下面是输出:c:\antc:\ant\binc:\ant\docsc:\ant\docs\ant2c:\ant\docs\antlibsc:\ant\docs\原创 2017-11-18 17:54:18 · 667 阅读 · 0 评论 -
tensorflow调试参数技巧整理
1:初始化很重要2:mini batch size处理,深度模型加成,可以训练过拟合数据,如果这样结果都不满意,可直接换个模型试试了。3:合适的loss function很重要,交叉熵,准确率走起4:多方使用relu,batchnorm,dropout,adam,Learning Rate动态设置,初始设置要合理5:图像预处理中选择 mean/std/ zero-center/原创 2017-11-18 18:15:49 · 3335 阅读 · 0 评论 -
glob的模块用于文件中特定文件的查找
glob是python自己带的一个文件操作相关模块,可以查找符合自己目的的文件,就类似于Windows下的文件搜索,而且也支持通配符,*,?,[]这三个通配符,*代表0个或多个字符,?代表一个字符,[]匹配指定范围内的字符,如[0-9]匹配数字。 它的主要方法就是glob,该方法返回所有匹配的文件路径列表,该方法需要一个参数用来指定匹配的路径字符串(本字符串可以为绝对路径也可以为相对路径原创 2017-11-21 15:26:00 · 795 阅读 · 0 评论 -
random.shuffle的使用
描述shuffle() 方法将序列的所有元素随机排序。语法以下是 shuffle() 方法的语法:import randomrandom.shuffle (lst )注意:shuffle()是不能直接访问的,需要导入 random 模块,然后通过 random 静态对象调用该方法。参数lst -- 可以是一个序列或者元组。转载 2017-11-21 15:28:54 · 2083 阅读 · 1 评论 -
如何确定卷积神经网络的卷积核大小、卷积层数、每层map个数
以下场景不能用Mongodb:1、数据结果要求不能有任何错误的场合。如银行帐户数据、电商交易数据等。这是因为在网络中断、机器重启等特殊情况下,mongodb的内存缓存可能会出现与硬盘上数据不一致的状况,后续读操作可能会读到错误数据(http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/)。而且,网络中断原创 2017-04-26 15:49:21 · 30558 阅读 · 0 评论 -
深度学习实现时存在的计算精度问题
以python语言计算sigmoid和cost函数为例介绍。 python的正无穷大,负无穷大a = float('Inf')b = np.log(0) #结果为-Inf-a == b #True 计算精度问题理论上 0.0 < a = sigmoid(z) < 1.0实际上,对python中的float64类型常量值,sigmoid(36) == ...原创 2018-12-08 17:23:49 · 1737 阅读 · 0 评论