请问卷积神经网络的概念谁最早在学术界提出的?
福岛邦彦。
2021年4月29日,福岛邦彦(Kunihiko Fukushima)获得 2021 年鲍尔科学成就奖。他为深度学习做出了杰出贡献,其最有影响力的工作当属「Neocognitron」卷积神经网络架构。
其实,熟悉这位Jürgen Schmidhuber人都知道,他此前一直对自己在深度学习领域的早期原创性成果未能得到业界广泛承认而耿耿于怀。
1979年,福岛博士在STRL开发了一种用于模式识别的神经网络模型:Neocognitron。
很陌生对吧?但这个Neocognitron用今天的话来说,叫卷积神经网络(CNN),是深度神经网络基本结构的最伟大发明之一,也是当前人工智能的核心技术。
什么?卷积神经网络不是一个叫Yann LeCun的大佬发明的吗?怎么又换成了福岛邦彦(Kunihiko Fukushima)了?
严格意义上讲,LeCun是第一个使用误差反向传播训练卷积神经网络(CNN)架构的人,但他并不是第一个发明这个结构的人。而福岛博士引入的Neocognitron,是第一个使用卷积和下采样的神经网络,也是卷积神经网络的雏形。
福岛邦彦(Kunihiko Fukushima)设计的具有学习能力的人工多层神经网络,可以模仿大脑的视觉网络,这种「洞察力」成为现代人工智能技术的基础。福岛博士的工作带来了一系列实际应用,从自动驾驶汽车到面部识别,从癌症检测到洪水预测,还会有越来越多的应用。
神经网络Hopfield模型
一、Hopfield模型概述
1982年,美国加州工学院J.Hopfield发表一篇对人工神经网络研究颇有影响的论文。他提出了一种具有相互连接的反馈型人工神经网络模型——Hopfield人工神经网络。
Hopfield人工神经网络是一种反馈网络(Recurrent Network),又称自联想记忆网络。其目的是为了设计一个网络,存储一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到所存储的某个平衡点上。
Hopfield网络是单层对称全反馈网络,根据其激活函数的选取不同,可分为离散型Hopfield网络(Discrete Hopfield Neural Network,简称 DHNN)和连续型 Hopfield 网络(Continue Hopfield Neural Network,简称CHNN)。离散型Hopfield网络的激活函数为二值型阶跃函数,主要用于联想记忆、模式分类、模式识别。这个软件为离散型Hopfield网络的设计、应用。
二、Hopfield模型原理
离散型Hopfield网络的设计目的是使任意输入矢量经过网络循环最终收敛到网络所记忆的某个样本上。
正交化的权值设计
这一方法的基本思想和出发点是为了满足下面4个要求:
1)保证系统在异步工作时的稳定性,即它的权值是对称的,满足。
wij=wji,i,j=1,2…,N;
2)保证所有要求记忆的稳定平衡点都能收敛到自己;
3)使伪稳定点的数目尽可能地少;
4)使稳定点的吸引力尽可能地大。
正交化权值的计算公式推导如下:
1)已知有P个需要存储的稳定平衡点x1,x2…,xP-1,xP,xp∈RN,计算N×(P-1)阶矩阵A∈RN×(P-1):
A=(x1-xPx2-xP…xP-1-xP)T。
2)对A做奇异值分解
A=USVT,
U=(u1u2…uN),
V=(υ1υ2…υP-1),
中国矿产资源评价新技术与评价新模型。
Σ=diαg(λ1,λ2,…,λK),O为零矩阵。
K维空间为N维空间的子空间,