Gradient Descent

本文讨论了使用lossfunction构成的costfunctionJ在寻找最优权重w和偏置b时的梯度下降方法,强调了学习率对w更新的重要性,以及如何计算J(w,b)中的导数dw。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用由loss function组成的cost function J来寻找最合适的w、b,从而降低J(w,b)

上图是gradient descent的本质:以J(w)为例,w更新就是不断用前一个w-(learning rate·导数)

这里要注意,导数用“dw”表示

如果是J(w,b)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值