VQA中多模态fusion方式小结

本文总结了多模态特征融合方法在视觉问答(VQA)任务中的应用,包括线性池化、双线性池化如Multi-modal Compact Bilinear (MCB)、Multi-modal Low-rank Bilinear (MLB)、Multi-modal Factorized Bilinear (MFB)以及MUTAN。线性池化简单但无法捕捉复杂关联,双线性池化引入高效计算策略但仍存在挑战。MFB通过矩阵分解改进了MLB,而MUTAN利用Tucker分解优化融合过程。这些方法展示了多模态理解的进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多模态特征融合的线性池化 : 连接或者元素相加(concatenation or element-wise. addition)来融合图像的视觉特征和问题的文本特征
这种方式不能有效的捕捉图像的视觉特征和问题的文本特征之间的复杂关联。

接着出现了双线性池化 :最早由 Separating Style and Content提出,但是高维的输出特征和大量的模型参数限制了可用性 。
双线性池化的形式:
在这里插入图片描述
1、Multi-modal Compact Bilinear (MCB) pooling使用 Tensor Sketch algorithm有效地减少参数数量和计算时间,但是MCB依赖一个高维输出(16000-D)特征来保证性能,内存使用过大。

2、Multi-modal Low-rank Bilinear (MLB)基于两个特征向量的Hadamard product。优点:输出低维特征,参数少。缺点:对于超参数敏感 ,收敛速度慢。
在这里插入图片描述
3、Multi-modal Factorized Bilinear pooling (MFB)
Inspired by the matrix factorization(矩阵分解)
在这里插入图片描述

### 多模态 RAG 和 VQA 的实现方案 多模态检索增强生成(Multimodal Retrieval-Augmentation Generation, mRAG)是一种结合了文本、图像和其他形式数据的先进技术,旨在提升基于知识的视觉问答(Vision Question Answering, VQA)系统的性能。以下是关于其核心概念和技术细节的具体说明: #### 核心原理 mR2AG 是一种创新框架,它通过融合多种模式的数据来解决复杂场景下的问题[^1]。该方法不仅依赖于预训练的语言模型,还引入了外部知识库的支持,从而显著提高了对特定领域信息的理解能力和回答质量。 #### 技术架构 为了构建高效的多模态 RAG-VQA 系统,通常采用以下模块化设计思路: - **跨模态编码器**: 使用统一的表示学习机制处理输入的异构数据类型,例如将图片转换成特征向量并与对应的自然语言描述联合建模。 ```python from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(text=["a photo of a cat"], images=cat_image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score ``` - **外接数据库查询组件**: 当前最先进的做法是从大规模结构化或半结构化的文档集合中提取相关信息片段作为补充材料提供给下游任务使用[^2]。 - **解码阶段优化策略**: 利用条件概率分布指导最终答案的选择过程,在保证流畅性的前提下兼顾事实依据的真实性。 #### 应用前景展望 随着相关理论研究不断深入以及实际应用场景日益丰富,可以预见的是未来几年内这一方向将迎来爆发式增长机遇[^3]。无论是教育行业还是医疗健康等领域都将受益匪浅。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值