Java 求解打家劫舍

一、题目

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
在这里插入图片描述

二、题解

(1)确定dp数组及下标的含义:

dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。

(2)确定递推公式:

决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第 i 房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2 )以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第 i 房间,那么dp[i] = dp[i - 1],即考虑 i-1 房,
(注意这里是考虑,并不是一定要偷 i-1 房,

<think>好的,用户想要了解动态规划中的逆序求解算法,并且需要示例代码。首先,我需要明确什么是逆序求解动态规划通常有两种实现方式:自顶向下(记忆化搜索)和自底向上(迭代)。逆序求解可能指的是从问题终点开始反向推导,比如在某些问题中,从后往前处理状态转移会更高效,比如最长公共子序列或者路径问题中的反向DP。 接下来,我需要查找相关的引用内容。用户提供了三个引用,其中引用[2]提到了逆序对,但可能和逆序求解关系不大。引用[1]和[3]都是关于动态规划的。引用[1]提到动态规划的基本原理,将问题分解为子问题并存储结果。引用[3]给出了斐波那契数和爬楼梯的例子,但都是自底向上的常规方法,不是逆序的。 用户可能需要的是从后向前处理状态的例子。例如,在矩阵链乘法或编辑距离问题中,有时候反向遍历可以优化计算。另个例子是背包问题,但通常也是正向处理。可能需要找个典型的问题,比如最小路径和,如果从终点往起点反向计算的话,可能更高效。 比如,最小路径和问题,通常从左上到右下,但也可以从右下到左上,结果是样的。但这是否算逆序求解呢?或者更复杂的例子,比如时间序列问题中的状态转移需要依赖后面的状态,这时候必须逆序处理。 比如,股票买卖问题中的某些情况,比如冷冻期问题,可能需要逆序处理。或者动态规划中的某些特定问题,比如“打家劫舍”问题,但常规解法是顺序的。 可能用户指的是状态转移方程中的依赖方向,比如当当前状态依赖于后面的状态时,必须逆序计算。例如,当处理i的状态需要i+1的状态时,必须从后往前遍历。比如,计算斐波那契数时,如果使用数组,通常是从前往后计算,但若某个问题需要从后往前填充数组,那可能属于逆序求解。 比如,个假设的问题:计算从起点到终点的路径数,但只能向右或向下走。常规DP是正向,但如果问题要求从终点开始计算到起点的路径数,可能结构类似,但方向相反。不过这可能不算真正的逆序求解,只是方向不同。 或者,考虑个时间序列的问题,比如资源分配,其中当前决策影响后续状态,可能需要逆序计算,例如从最后步倒推到第步。这种情况下,动态规划的处理顺序是逆序的。 例如,在背包问题中,如果每个物品只能选次,逆序处理容量可以避免重复选择,但这是优化技巧,可能用户需要的是这种例子。 现在需要确定用户的问题是什么。用户提到“动态规划逆序求解”,可能是指状态转移方程中的处理顺序,或者问题本身需要反向推导。需要找个合适的例子,并给出代码。 根据引用[3]中的斐波那契例子,常规是正向计算,但如果改变方向,可能没有太大区别。但可能需要更明显的例子,比如最长递增子序列(LIS),通常解法是正向的,但另种方法可能涉及逆序处理。或者,编辑距离问题中的状态转移,可能涉及从后往前比较字符。 但可能更合适的例子是时间序列的逆序处理。例如,某个问题中,状态i依赖于i+1的状态,因此必须从后往前计算。 比如,计算从位置n到位置0的最短路径,其中每个位置i可以跳到i+1或i+2,这时逆序处理可能从n开始倒推。或者,个更具体的例子,比如解决“最小跳跃次数”问题,其中需要从目标位置反向计算到起点的最少步骤。 例如,Leetcode 45. 跳跃游戏 II,可能需要逆序贪心,但动态规划解法可能需要反向处理。或者,比如,给定个数组,每个元素表示最多可以跳跃的步数,求到达最后个位置的最小跳跃次数。常规的动态规划解法是正向,但可能效率低,而逆序处理可能更高效。 不过,我需要找到个明确的逆序动态规划的例子,并给出代码。假设用户需要的是状态转移方向为逆序的情况,例如从后往前填充DP表。 例如,计算个字符串的回文子序列数目,可能涉及到从两端向中间处理,但常规解法可能不是逆序的。另个例子是,最长回文子序列的动态规划解法,其中dp[i][j]依赖于dp[i+1][j-1]等,因此需要逆序填充i从后往前。 是的,最长回文子序列的问题中,通常我们会让i从字符串末尾向前遍历,j从i+1开始向后遍历,这样确保计算dp[i][j]时,dp[i+1][j-1]已经计算过了。这种情况下,i的处理顺序是逆序的。 因此,可以以最长回文子序列为例,说明逆序动态规划的应用,并给出代码。 例如,动态规划表dp[i][j]表示字符串s[i..j]的最长回文子序列长度。状态转移方程为: 如果s[i] == s[j],则dp[i][j] = dp[i+1][j-1] + 2 否则,dp[i][j] = max(dp[i+1][j], dp[i][j-1]) 在这种情况下,i需要从n-1到0逆序处理,j从i+1到n-1顺序处理。因为计算dp[i][j]时需要dp[i+1][j-1],所以必须逆序i。 这样的例子符合逆序求解动态规划。因此,可以给出这个问题的代码示例,并解释逆序处理的原因。 接下来,我需要检查用户提供的引用是否有相关内容。引用[2]提到逆序对,但可能与当前问题无关。引用[3]中的动态规划例子都是常规顺序,但最长回文子序列的例子可能没有在引用中出现。不过用户要求的是逆序求解的程序实现,所以可能需要自己构造这个例子。 因此,回答的结构可以是: 1. 解释逆序动态规划的概念和应用场景。 2. 给出最长回文子序列作为例子,说明状态转移方程和逆序处理的原因。 3. 提供示例代码(Python或Java),并解释代码中的逆序处理部分。 4. 分析代码的时间复杂度和空间复杂度。 5. 最后生成相关问题。 另外,需要确保数学公式使用正确的格式,行内公式用$...$,独立公式用$$...$$。 现在,开始组织回答内容: 首先,解释逆序求解动态规划中的含义,比如状态转移方向需要从后向前处理,常用于某些特定问题结构,例如最长回文子序列,其中子问题的解依赖于后面的状态。接着,以最长回文子序列为例,给出状态转移方程,说明为什么需要逆序处理i。然后提供代码示例,使用双重循环,外层i从n-1到0逆序,内层j从i+1到n-1。然后分析时间和空间复杂度。最后生成相关问题,如逆序求解的应用场景、优化空间复杂度的方法,以及与顺序求解的区别等。 需要确保代码正确,并且注释说明逆序处理的部分。例如,在Python中: def longestPalindromeSubseq(s: str) -> int: n = len(s) dp = [[0]*n for _ in range(n)] for i in range(n-1, -1, -1): dp[i][i] = 1 for j in range(i+1, n): if s[i] == s[j]: dp[i][j] = dp[i+1][j-1] + 2 else: dp[i][j] = max(dp[i+1][j], dp[i][j-1]) return dp[0][n-1] 这段代码中,i从n-1到0逆序遍历,确保在计算dp[i][j]时,dp[i+1][...]已经计算过。这正是逆序动态规划的典型应用。 总结:用户需要的是动态规划中逆序处理状态的示例,最长回文子序列是个合适的例子,代码中的i循环逆序处理是关键点。</think>### 动态规划逆序求解示例 动态规划中的逆序求解通常指从问题终点反向推导状态转移,适用于某些子问题的解依赖于后续状态的情况。例如最长回文子序列问题,其状态转移方程要求先计算较大索引的状态,因此需要逆序处理下标。 #### 示例:最长回文子序列 **问题描述** 给定字符串 $s$,求其最长回文子序列的长度。 **状态定义** 设 $dp[i][j]$ 表示子串 $s[i..j]$ 的最长回文子序列长度。 **状态转移方程** $$ dp[i][j] = \begin{cases} dp[i+1][j-1] + 2, & s[i] = s[j] \\ \max(dp[i+1][j], \, dp[i][j-1]), & s[i] \neq s[j] \end{cases} $$ **逆序处理逻辑** 由于 $dp[i][j]$ 依赖于 $dp[i+1][j-1]$(即行索引更大的状态),必须从后向前遍历 $i$,而 $j$ 则从 $i+1$ 开始正向遍历。 #### 示例代码(Python) ```python def longest_palindrome_subseq(s: str) -> int: n = len(s) dp = [[0] * n for _ in range(n)] for i in range(n-1, -1, -1): # 逆序遍历i dp[i][i] = 1 # 单个字符的字符串回文长度为1 for j in range(i+1, n): if s[i] == s[j]: dp[i][j] = dp[i+1][j-1] + 2 else: dp[i][j] = max(dp[i+1][j], dp[i][j-1]) return dp[0][n-1] ``` #### 代码解析 1. **初始化**:二维数组 `dp` 表示子问题的解。 2. **逆序填充**:外层循环 `i` 从字符串末尾向前遍历,确保计算 `dp[i][j]` 时 `dp[i+1][j-1]` 已就绪。 3. **边界条件**:单个字符的字符串回文长度为1。 4. **状态转移**:根据字符是否相等,选择不同的转移路径。 #### 复杂度分析 - **时间复杂度**:$O(n^2)$,双重循环遍历所有子问题。 - **空间复杂度**:$O(n^2)$,二维数组存储状态。可通过滚动数组优化至 $O(n)$[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南淮北安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值