DistBelief简介(TensorFlow前身)

DistBelief是Google的一个分布式深度学习框架,它支持模型并行和数据并行,采用Downpour SGD和Sandblaster L-BFGS等分布式优化算法。Downpour SGD是异步SGD,适合大规模模型训练,而Sandblaster L-BFGS是L-BFGS的分布式实现,提供高效率的优化。该框架能够应对机器故障,提高训练效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DistBelief

原始论文见此

1 主要工作

模型并行、数据并行。

  • Downpour SGD,异步随机梯度下降,适应性学习率,支持大规模模型副本。
  • Sandblaster L-BFGS,L-BFGS(解释见最后)的分布式实现。

通过实验得到的几个关于大规模非凸优化的结论:

  • 异步SGD,一般不会在非凸优化上使用,但在训练深度学习网络上表现很好,特别是和Adagrad适应性学习率方法结合起来时。
  • 在资源足够的情况下,L-BFGS可以和很多SGD的变体相比可以更快。

2 模型并行

用户定义的计算发生在模型每一层的每一个节点上,消息随着计算的过程传递。对大的模型,用户可以将模型分到不同的机器上,所以模型不同节点的计算也就分配到不同的机器上。框架自动将每个机器上的计算并行起来,管理机器间的通信、同步、数据传输。

在多个机器间的深度网络的分布式计算的性能收益,取决于结构之间的连通性和模型对计算的需求。有着大规模参数、或者大量计算需求的模型,一般会从访问更多CPU和内存中获益。

3 分布式优化算法

DistBelief的目标不只是在模型的单个实例之间并行,但是要在多个模型实例之间进行分布式训练。Downpour SGD和Sandblaster L-BFGS使用一个中心化分片式参数服务器,模型副本使用它来共享参数。两个方法都利用了DistBelief在单个副本的分布式计算的优势。但是更重要地,两种方法都设计来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值