结构化机器学习项目总结

本文探讨了优化机器学习模型的多种策略,包括使用单一实数评判标准如F1Score,应对训练与测试集分布不一致的问题,理解并减少偏差与方差,以及深入解析Bayes error的概念。通过实例说明了在不同场景下如何调整优化目标和指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1:单一实数评判:比如采用F1Score来代替Precision跟Recall。

2.一个优化指标 subject to 多个优化条件

3.设置dev and test set 最好遵循同一分布。

4.1有时候 error 可能很低,但是error的种类是完全不能接受时,我们需要改变error的计算方式。(修改设定目标)

4.2 又比如训练集跟开发集上准确率很高,但是test集上表现很差。此时可能需要修改指标或者开发与测试集合。

      如下例,train 跟 test 的分布完全不同。

 

5. 可避免偏差(training error 跟 贝叶斯error),方差(training error 跟 dev error)。

6. bayes error 的理解

7.优化方法

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值