1。命名实体识别问题(Named-entity recognition)
x(i)(t) 即第i个样本的第t个位置的单词
T(i) 即第i样本训练长度
2. rnn基本表达式
3.前向传播以及反向传播的示意图
4. RNN多种结构
5.
6.RNN UNIT, 存在梯度消失问题(不能长时记忆)。
7.有gate来记录是否要记忆。
8.
9.LSTM结构。
10.lstm图示
11.双向神经网络,可以注意到计算时,weight 乘的不再是前一刻的a-1以及 x(t),而是双向 a
12 . 深层RNN,时间上连接的一般不会超过3层。