序列模型

本文深入探讨了命名实体识别问题中RNN的基本表达式、前向与反向传播,详细介绍了RNN的多种结构及其存在的梯度消失问题。通过对比RNN单元与带有门控机制的LSTM结构,阐述了LSTM如何解决长时记忆难题,并讨论了双向神经网络和深层RNN在实际应用中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1。命名实体识别问题(Named-entity recognition)

x(i)(t) 即第i个样本的第t个位置的单词

T(i) 即第i样本训练长度

2. rnn基本表达式

3.前向传播以及反向传播的示意图

4. RNN多种结构

5.

6.RNN UNIT, 存在梯度消失问题(不能长时记忆)。

7.有gate来记录是否要记忆。

8.

9.LSTM结构。

10.lstm图示

11.双向神经网络,可以注意到计算时,weight 乘的不再是前一刻的a-1以及 x(t),而是双向 a

12 . 深层RNN,时间上连接的一般不会超过3层。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值