k-means

本文详细介绍了K均值聚类算法的工作流程,包括随机选择初始聚类中心,通过计算距离进行点的聚类,更新聚类中心,并重复此过程直至聚类中心稳定。这是一个迭代的过程,涉及到生成中心、重新聚类、再生成中心,直至中心变化很小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 第一步 - 随机选择 K 个点作为点的聚类中心,这表示我们要将数据分为 K 类。
  • 第二步 - 遍历所有的点 P, 算出 P 到每个聚类中心的距离,将 P 放到最近的聚类中心的点集中。遍历结束后我们将得到 K 个点集。
  • 第三步 - 遍历每一个点集,算出每一个点集的中心位置,将其作为新的聚类中心。
  • 第四步 - 重复步骤 2 和步骤 3,直到聚类中心位置不再移动。

即 生成中心->重新聚类  ->再生成中心 ->再重新聚类  ->一直到中心变化很小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值