
DeepSeek代码生成+低代码=王炸!靠DeepSeek+低代码接私单,薪资翻了10倍!
比如,一些传统模型在处理长上下文的代码生成任务时,往往会因为内存占用过高而出现卡顿甚至无法运行的情况,而 DeepSeek 的 MLA 机制通过对注意力键和值进行低秩联合压缩,减少了推理过程中的键值缓存(KV cache),从而大大降低了内存占用,使得它能够轻松应对长上下文的挑战。在模型的灵活性和适应性方面,DeepSeek 的 MoE 架构也表现出色,它能够根据不同的任务需求,动态地调整计算资源的分配,而不像一些固定架构的模型那样,在面对多样化的任务时显得力不从心。在金融领域,低代码平台同样大显身手。
