LeetCode //C - 779. K-th Symbol in Grammar

779. K-th Symbol in Grammar

We build a table of n rows (1-indexed). We start by writing 0 in the 1 s t 1^{st} 1st row. Now in every subsequent row, we look at the previous row and replace each occurrence of 0 with 01, and each occurrence of 1 with 10.

  • For example, for n = 3, the 1 s t 1^{st} 1st row is 0, the 2 n d 2^{nd} 2nd row is 01, and the 3 r d 3^{rd} 3rd row is 0110.

Given two integer n and k, return the k t h k^{th} kth (1-indexed) symbol in the n t h n^{th} nth row of a table of n rows.
 

Example 1:

Input: n = 1, k = 1
Output: 0
Explanation: r o w 1 : 0 ‾ row 1: \underline{0} row1:0

Example 2:

Input: n = 2, k = 1
Output: 0
Explanation:
row 1: 0
r o w 2 : 0 ‾ 1 row 2: \underline{0}1 row2:01

Example 3:

Input: n = 2, k = 2
Output: 1
Explanation:
row 1: 0
r o w 2 : 0 1 ‾ row 2: 0\underline{1} row2:01

Constraints:
  • 1 <= n <= 30
  • 1 < = k < = 2 n − 1 1 <= k <= 2^{n - 1} 1<=k<=2n1

From: LeetCode
Link: 779. K-th Symbol in Grammar


Solution:

Ideas:
  • Each row is generated by transforming the previous row:

    • 0 → 01, 1 → 10
  • This means:

    • The first half of the row is the same as the previous row.
    • The second half is the flipped version.
  • mid = 2^(n-2) represents the size of the first half.

  • Recursively:

    • If k is in the first half → same value as previous row.
    • If k is in the second half → flipped value of corresponding position in previous row.
Code:
int kthGrammar(int n, int k) {
    if (n == 1) return 0;

    int mid = 1 << (n - 2); // 2^(n-2), the midpoint of the row

    if (k <= mid)
        return kthGrammar(n - 1, k); // Left half: same as in previous row
    else
        return 1 - kthGrammar(n - 1, k - mid); // Right half: flipped value
}
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值