LeetCode //C - 790. Domino and Tromino Tiling

790. Domino and Tromino Tiling

You have two types of tiles: a 2 x 1 domino shape and a tromino shape. You may rotate these shapes.
在这里插入图片描述
Given an integer n, return the number of ways to tile an 2 x n board. Since the answer may be very large, return it modulo 1 0 9 + 7 10^9 + 7 109+7.

In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.
 

Example 1:

在这里插入图片描述

Input: n = 3
Output: 5
Explanation: The five different ways are shown above.

Example 2:

Input: n = 1
Output: 1

Constraints:
  • 1 <= n <= 1000

From: LeetCode
Link: 790. Domino and Tromino Tiling


Solution:

Ideas:
  • Base cases:

    • dp[0] = 1 (empty board)
    • dp[1] = 1 (one vertical domino)
    • dp[2] = 2 (two horizontal OR two vertical dominoes)
  • Recurrence relation: dp[i] = dp[i-1] + dp[i-2] + 2*dp[i-3]

  • Three ways to build a 2×i board:

    • Take a 2×(i-1) solution + add 1 vertical domino
    • Take a 2×(i-2) solution + add 2 horizontal dominoes
    • Take a 2×(i-3) solution + add tromino combinations (2 symmetric patterns)
  • Key insight: The factor of 2 in 2*dp[i-3] accounts for the two different ways tromino pieces can be arranged to fill a 2×3 gap

Code:
int numTilings(int n) {
    const int MOD = 1000000007;
    
    if (n <= 0) return 0;
    if (n == 1) return 1;
    if (n == 2) return 2;
    
    // dp[i] represents number of ways to tile 2×i board
    // We need to consider the different ways to fill the rightmost columns
    
    long long dp[n+1];
    dp[0] = 1;  // Base case: empty board
    dp[1] = 1;  // One vertical domino
    dp[2] = 2;  // Two ways: (two horizontal) OR (two vertical)
    
    // For each position i >= 3, we can:
    // 1. Take dp[i-1] and add a vertical domino (1 way)
    // 2. Take dp[i-2] and add two horizontal dominoes (1 way)  
    // 3. Take dp[i-3] and add a tromino + domino combination (2 ways)
    //    This accounts for the L-shaped tromino patterns
    
    for (int i = 3; i <= n; i++) {
        dp[i] = (dp[i-1] + dp[i-2] + 2 * dp[i-3]) % MOD;
    }
    
    return (int)dp[n];
}
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Navigator_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值