# 使用最大边际相关性 (MMR) 进行示例选择:提高AI多样性的策略
## 引言
在构建智能系统时,选择合适的训练示例是优化模型性能的关键步骤。传统的示例选择通常只关注相似性,但这种方法可能导致缺乏多样性。本文将介绍一种先进的示例选择方法:最大边际相关性 (MMR),同时兼顾相似性和多样性,提升模型的泛化能力。
## 主要内容
### 最小化相似性和最大化多样性
最大边际相关性 (MMR) 示例选择通过寻找与输入最相似的嵌入,并在迭代过程中考虑已选择示例的多样性来优化选择过程。具体而言:
- **相似性**:通过计算输入和候选示例之间的余弦相似度来衡量。
- **多样性**:在添加新示例时,通过引入已选择示例的惩罚项来鼓励多样性。
### 实现技术
该方法依赖于大规模的向量存储和快速嵌入计算技术,可以通过库如`FAISS`和`OpenAIEmbeddings`实现。
## 代码示例
下面的代码演示了MMR示例选择的具体实现:
```python
from langchain_community.vectorstores import FAISS
from langchain_core.example_selectors import MaxMarginalRelevanceExampleSelector
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
from langchain_openai import OpenAIEmbeddings
example_prompt = PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
)
# 示例数据:创建反义词
examples = [
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
{"input": "energetic", "o