使用最大边际相关性 (MMR) 进行示例选择:提高AI多样性的策略

# 使用最大边际相关性 (MMR) 进行示例选择:提高AI多样性的策略

## 引言

在构建智能系统时,选择合适的训练示例是优化模型性能的关键步骤。传统的示例选择通常只关注相似性,但这种方法可能导致缺乏多样性。本文将介绍一种先进的示例选择方法:最大边际相关性 (MMR),同时兼顾相似性和多样性,提升模型的泛化能力。

## 主要内容

### 最小化相似性和最大化多样性

最大边际相关性 (MMR) 示例选择通过寻找与输入最相似的嵌入,并在迭代过程中考虑已选择示例的多样性来优化选择过程。具体而言:

- **相似性**:通过计算输入和候选示例之间的余弦相似度来衡量。
- **多样性**:在添加新示例时,通过引入已选择示例的惩罚项来鼓励多样性。

### 实现技术

该方法依赖于大规模的向量存储和快速嵌入计算技术,可以通过库如`FAISS`和`OpenAIEmbeddings`实现。

## 代码示例

下面的代码演示了MMR示例选择的具体实现:

```python
from langchain_community.vectorstores import FAISS
from langchain_core.example_selectors import MaxMarginalRelevanceExampleSelector
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
from langchain_openai import OpenAIEmbeddings

example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="Input: {input}\nOutput: {output}",
)

# 示例数据:创建反义词
examples = [
    {"input": "happy", "output": "sad"},
    {"input": "tall", "output": "short"},
    {"input": "energetic", "o
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值