【参数辨识】永磁同步电机的参数辨识

本文介绍了一种基于RLS(递推最小二乘法)的电机参数辨识方法,通过建立矢量控制模型,将定子电压方程转化为辨识方程,并在仿真环境下验证了该方法的有效性。辨识结果表明,电机参数辨识效果良好,误差在可接受范围内。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

辨识的参数为: 定子电阻Rs, 永磁磁链φf, dq轴电感Lq

主要步骤可如下:
1.建立矢量控制的电机模型
2.确定辨识方法
3.将定子电压方程转化为辨识方程
4.搭建辨识仿真模型,开始仿真


第一步 建立矢量控制的电机模型

在这里插入图片描述

第二步 确定辨识方法–这里我采用RLS方法(递推最小二乘法)

它的主要公式由以下三部分组成

第三步 将定子电压方程转化为辨识方程

因为采用的id=0,故只需对q轴的定子电压进行辨识分析

其中协方差矩阵初值P(0)选为特征值为1e4的3*3单位矩阵,遗忘因子选为0.999,a,b,c的初值分别选为0,0,1e4。
注: w是转子旋转电角速度 它等于转子速度wm(rad/s)乘以极对数
转子电角度 = 机械角度 * 极对数

第四步 在矢量控制的基础上搭建辨识仿真模型,开始仿真

同时需要在输入前和输入后加上滤波器,滤掉扰动噪声
仿真结果如下:

辨识结果:定子电阻5.53 电感0.01235 永磁磁链0.127
与真实电机数据比较

可得辨识误差为:定子电阻1.25% dq轴电感 6.74% 永磁磁链1.6%

总结:对电感辨识误差略大,但总体电机参数辨识效果良好,达到了电机参数辨识的目的。

### 永磁同步电机最小二乘法参数辨识的改进方法 #### 基于RLS的在线参数辨识 为了提高永磁同步电机参数辨识的精度和实时性,采用递推最小二乘法(Recursive Least Squares, RLS)可以有效解决传统离线参数辨识方法存在的问题。通过引入遗忘因子来调整历史数据的影响权重,使得算法能够更好地适应动态变化的工作环境[^1]。 ```python import numpy as np def rls_parameter_identification(y, u, lambda_factor=0.98): """ 使用RLS进行参数辨识 :param y: 输出向量 :param u: 输入向量 :param lambda_factor: 遗忘因子,默认为0.98 :return: 辨识得到的参数矩阵 """ n = len(u) p = np.eye(n) * 1e6 # 初始化协方差矩阵P theta_hat = np.zeros((n, 1)) # 初始化参数估计值theta_hat for k in range(len(y)): phi = u[k].reshape(-1, 1) # 构造回归矢量phi # 计算增益K K = (p @ phi) / (lambda_factor + phi.T @ p @ phi) # 更新参数估计值 e = y[k] - phi.T @ theta_hat theta_hat += K * e # 更新协方差矩阵P p = (np.eye(n) - K @ phi.T) @ p / lambda_factor return theta_hat.flatten() ``` #### 引入自适应调节机制 进一步地,在RLS基础上加入自适应调节机制,可以根据实际运行情况自动调整算法中的关键参数,如步长系数α和遗忘因子λ。这不仅提高了系统的鲁棒性和抗干扰能力,还增强了对不同工况下快速响应的能力[^2]。 #### 多模型融合策略 考虑到单一模型可能无法全面覆盖复杂的电机特性,多模型融合成为一种有效的解决方案。具体来说,就是构建多个子模型分别针对特定条件下的最优解,并利用加权平均或其他组合方式得出最终结果。这种方法能够在保持较高计算效率的同时获得更优的整体性能表现。
评论 97
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值