什么是端到端的学习

端到端学习是深度学习的一种范式,它摒弃了传统图像识别的预处理和分步方法,直接使用原始数据进行训练,通过深度模型学习从输入到输出的直接映射。这种方法解决了贡献度分配问题,整个训练和预测都在模型内部完成,包括数据损失和正则化损失的优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

端到端学习(End-to-End Learning),也称端到端训练,是指在学习过程中,不需要明确地给出不同模块或阶段的功能,中间过程不需要人为干预。端到端学习的训练数据为“输入-输出”对的形式,无需提供其他额外信息。端到端学习要解决“贡献度分配”问题。  端到端的学习是不做其他额外处理,从原始数据输入到任务结果输出,整个训练和预测过程,都是在模型里完成的。

  传统的图像识别问题往往通过分治法将其分分解为预处理、特征提取和选择、分类器设计等若干步骤。分治法的动机是将图像识别的母问题分解为简单、可控且清晰的若干小的子问题。不过分步解决子问题时,尽管可以在子问题上得到最优解,但子问题上的最优解并不意味着就能得到全局问题的最后解。

    深度学习提供了一种“端到端”的学习范式,整个学习的流程并不进行人为的子问题划分,而是完全交给深度学习模型直接学习从原始数据到期望输出的映射。对深度模型而言,模型的训练可以简单抽象为从原始数据向最终目标的直接拟合,而中间的这些部件起到了将原始数据映射为特征随后在映射为样本标记的作用。其输入数据是未经任何人为加工的原始样本形式,后续则是堆叠在输入层上的众多操作层。这些操作层整体可以看作一个复杂的函数Fcnn,最终的损失函数由数据损失(data loss)和模型参数的正则化损失(regularization loss)共同组成,模型深度的训练则是在最终损失驱动下对模型进行参数更新并将误差反向传播至网络各层。

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

稻壳特筑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值