数据观察工具特征

上文我们讨论什么是数据观察,本文继续讨论数据观察对于DataOps的重要性,以及数据观察工具的重要特征。

数据观察对于DataOps的重要性,就如监控系统对DevOps的重要性一样。随着组织的发展,底层技术栈变得越来越复杂(想想看:从单体到微服务架构的转变),对于软件工程部门的DevOps团队来说,保持系统健康的持续运行,部署持续集成和开发(CI/CD)方法变得非常重要。

可观察性(Observability)是软件工程词汇中最近增加的术语,它满足了这种需求,指的是对事件进行监视、跟踪和分类,以防止软件应用程序停机。

可观测性数据的核心有三个方面:

  • 度量:指随时间测量数据的数值表示。
  • 日志:特定时间发生事件的记录,也包括发生事件的上下文信息。
  • 跟踪:表示分布式环境中因果相关的事件。

总之,这三个方面和应用管理(APM)解决方案(如DataDog或Splunk)为DevOps团队和软件工程师提供了预测未来行为的宝贵意识和见解,反过来,信任他们的IT系统能够满足SLAs(Service-Level Agreements :服务等级协议)。

数据工程团队需要类似的流程和工具来监控他们的ETL(或ELT)流程及数据链接管道,并防止跨数据系统的数据停机。输入数据可观测性。

对于数据工程师和开发人员来说,数据可观察性很重要,因为数据停机意味着浪费时间和资源;对于数据使用者来说,它会削弱您对决策的信心。

数据观察工具的关键特征

考虑到这类基本问题没有一个强有力的标准答案时,评估标准可能会很棘手。你也许看到分析师们使用的数据观察标准及模板,但简而言之,一个优秀的数据观察平台具有以下特征:
在这里插入图片描述

  • 它可以快速无缝地连接到现有的堆栈,并且不需要修改数据管道、编写新代码或使用特定的编程语言。这允许快速评估和最大化测试覆盖率,而无需进行大量投资。
  • 它监视静态数据,并且不需要从当前存储的位置提取数据。这使得数据可观察性解决方案具有高性能、可扩展性和成本效益。它还确保您满足最高级别的安全性和遵从性需求。
  • 它需要最少的配置,几乎不需要设置阈值。数据观察工具应该使用机器学习模型来自动学习环境和数据。它使用异常检测技术让知道什么时候出现故障。它不仅考虑了单个指标,还考虑了数据的整体视图和任何特定问题的潜在影响,从而最大限度地减少了误报。您不需要在数据可观察性平台中花费资源配置和维护嘈杂的规则。
  • 它不需要事先映射需要监控的内容和方式。它可以帮助您识别关键资源、关键依赖项和关键不变量,从而轻松获得广泛的数据可观察性。
  • 它提供丰富的上下文,支持快速分类和故障排除,以及与受数据可靠性问题影响的涉众进行有效的沟通。数据可观察性工具不应该止步于“今天表Y中的字段X的值低于Z”。
  • 它通过公开有关数据资产的丰富信息来防止问题的发生,这样就可以负责地、主动地进行更改和修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值