上文我们介绍了Dataframe,本文继续介绍Contexts 和 Expressions。Contexts 和 Expressions是polar独特的数据转换语法的核心组件。本文分别介绍其概念,并通过示例进行说明。
Contexts
Contexts 指的是计算表达式的特定环境或情况。换句话说,Contexts 是您希望对数据执行的基本操作。polar有三种主要情况:
- Selection:从DataFrame中选择列
- Filtering:通过提取符合指定条件的行来减小DataFrame的大小
- Groupby/aggregation:计算数据子组内的汇总统计信息
你可以把上下文看作动词,把表达式看作名词。上下文决定了表达式如何计算和执行,就像动词决定了语言中名词的动作一样。要开始使用表达式和上下文,你将使用与之前相同的随机生成的数据。下面是再次创建示例DataFrame的代码:
# %%
import numpy as np
import polars as pl
num_rows = 5000
rng = np.random.default_rng(seed=7)
buildings_data = {
"sqft": rng.exponential(scale=1000, size