Python Polars快速入门指南:Contexts 和 Expressions

上文我们介绍了Dataframe,本文继续介绍Contexts 和 Expressions。Contexts 和 Expressions是polar独特的数据转换语法的核心组件。本文分别介绍其概念,并通过示例进行说明。

在这里插入图片描述

Contexts

Contexts 指的是计算表达式的特定环境或情况。换句话说,Contexts 是您希望对数据执行的基本操作。polar有三种主要情况:

  • Selection:从DataFrame中选择列
  • Filtering:通过提取符合指定条件的行来减小DataFrame的大小
  • Groupby/aggregation:计算数据子组内的汇总统计信息

你可以把上下文看作动词,把表达式看作名词。上下文决定了表达式如何计算和执行,就像动词决定了语言中名词的动作一样。要开始使用表达式和上下文,你将使用与之前相同的随机生成的数据。下面是再次创建示例DataFrame的代码:

# %%
import numpy as np
import polars as pl

num_rows = 5000
rng = np.random.default_rng(seed=7)

buildings_data = {
   
    "sqft": rng.exponential(scale=1000, size
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值