
人工智能
文章平均质量分 82
介绍机器学习、大模型等开源技术,一起学习交流
梦想画家
开源软件爱好者,乐于博客分享,业余时间喜欢跑步和科幻,希望与意趣相投朋友一起学习交流。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
构建语义搜索引擎:Weaviate的实践与探索
随着人工智能技术的飞速发展,我们与数据的交互方式正在发生深刻变革。传统的基于关键词的搜索方法已经难以满足日益复杂的用户需求,而**语义搜索**作为一种新兴的搜索技术,正逐渐成为主流。本文将介绍如何使用开源向量数据库**Weaviate**构建一个语义搜索引擎,并通过实际案例展示其强大功能。原创 2025-08-06 14:37:26 · 371 阅读 · 0 评论 -
基于K近邻的缺失值填补:原理、步骤与实战解析
在真实世界的数据集中,缺失值就像藏在数据拼图里的空白碎片——它们可能源于数据采集设备的故障、用户未填写的表单字段,或是系统传输过程中的意外丢失。据统计,超过 **60%** 的实际业务数据集存在不同程度的缺失值问题,若直接删除或简单填充,可能导致模型偏差甚至错误结论。本文将深入解析一种经典的缺失值填补方法:**K近邻填补(K-Nearest Neighbors Imputation)**,通过原理拆解、步骤演示和Python实战,带你掌握这一“数据侦探”的核心技能。原创 2025-08-01 16:35:55 · 1075 阅读 · 0 评论 -
深入探索Weaviate:构建高效AI应用的数据库解决方案
在当今数据驱动的世界中,高效地存储、检索和处理大规模数据成为了AI应用开发的关键挑战。Weaviate作为一个开源的向量搜索引擎,凭借其强大的功能和灵活的架构,正逐渐成为开发者构建智能AI应用的首选工具。本文将深入探讨Weaviate的核心概念、架构设计、索引机制以及其在实际应用中的优势。原创 2025-07-31 08:04:27 · 1243 阅读 · 0 评论 -
从数据到预测:InfluxDB+Prophet时间序列分析案例实战
本文通过实战案例,演示如何利用开源工具链实现时间序列数据的预测分析。以伦敦天气温度预测为例,首先通过Open-Meteo API获取历史天气数据,借助InfluxDB 3 Cloud Serverless(免费版)完成高效存储;随后使用Facebook开源的Prophet机器学习库,基于历史数据构建预测模型,自动捕捉日/周/年季节性及趋势变化,生成未来30天的温度预测结果并可视化。原创 2025-07-30 21:19:27 · 845 阅读 · 0 评论 -
Weaviate混合搜索实战:构建高效语义检索系统
本文深入探讨Weaviate的混合搜索(Hybrid Search)技术,结合**稀疏向量(BM25关键词匹配)**和**密集向量(语义嵌入)**,提升检索系统的准确性和相关性。我们将从**需求背景**出发,介绍Weaviate的核心概念,详细讲解**索引构建、文档加载、混合搜索实现**等关键步骤,并提供完整的代码示例。最后,总结Weaviate在知识库、问答系统等场景中的应用价值。原创 2025-07-30 17:35:08 · 987 阅读 · 0 评论 -
PyTorch模型训练监控全指南:从基础日志到高级可视化工具
在深度学习模型开发过程中,监控训练过程至关重要。它不仅能帮助我们理解模型学习情况,还能及时发现并解决训练中的问题。本文将详细介绍在PyTorch中监控模型训练的多种方法,从简单的打印日志到专业的可视化工具,帮助您选择最适合的监控方案。原创 2025-06-23 00:30:00 · 727 阅读 · 0 评论 -
优化PyTorch模型推理:提升速度与效率的全面指南
在机器学习项目中,模型训练只是第一步,真正的挑战在于如何高效地将训练好的模型部署到生产环境中进行推理。本文深入探讨了如何优化PyTorch模型的推理过程,涵盖了从模型转换、量化到数据加载和GPU加速等多个方面的实用技术。通过这些优化策略,您可以显著提升模型推理的速度和资源利用率,满足实际应用中的性能需求。原创 2025-06-21 15:03:42 · 1240 阅读 · 0 评论 -
深入探索PyTorch模型的内部机制:从参数到计算图
PyTorch作为当今最流行的深度学习框架之一,以其动态计算图和灵活的模块化设计著称。本文将深入探讨PyTorch模型的内部机制,包括如何访问模型参数、可视化计算图、以及提取中间层激活值。通过这些技术,开发者可以更好地调试模型、理解数据流动,并优化模型性能。原创 2025-06-18 01:30:00 · 593 阅读 · 0 评论 -
PyTorch数据分割全流程指南:从MNIST数据集到模型训练
在机器学习项目中,数据分割是确保模型泛化能力的关键步骤。本文详细介绍了如何使用PyTorch框架对MNIST数据集进行训练集、验证集和测试集的分割,并展示了如何创建数据加载器以及将这些分割整合到模型训练流程中。通过本文,您将掌握PyTorch中数据分割的核心技术,为构建稳健的机器学习模型打下坚实基础。原创 2025-06-16 00:00:00 · 1047 阅读 · 0 评论 -
深度学习中的激活函数:PyTorch中的ReLU及其应用
在深度学习的领域中,人工神经网络是理解和提取大规模数据集模式的核心工具。这些网络通过激活函数引入非线性,使得模型能够学习复杂的数据表示。其中,ReLU(Rectified Linear Unit,修正线性单元)函数是最常用的激活函数之一。PyTorch,作为一款流行的深度学习框架,提供了`torch.relu()`函数,使得ReLU的实现变得简单而高效。本文将深入探讨ReLU的原理、优势、在PyTorch中的实现方法,以及其替代方案Leaky ReLU。原创 2025-06-14 19:02:22 · 1105 阅读 · 0 评论 -
PyTorch学习路径与基础实践指南
本文综合了Sling Academy的两篇PyTorch入门教程精华,为初学者提供了一条清晰的学习路径和实用的基础实践指南。文章首先概述了学习PyTorch的完整路线图,从基础知识准备到环境设置,再到神经网络构建与模型训练。随后深入讲解了PyTorch的核心概念,包括张量操作和简单神经网络的实现。通过丰富的代码示例和详细解释,本文旨在帮助读者建立扎实的PyTorch基础,为更复杂的机器学习项目打下坚实基础。原创 2025-06-09 20:18:37 · 602 阅读 · 0 评论 -
Drools从入门到实战,提升系统灵活配置能力
**Drools** 是一个强大的 **业务规则管理系统(BRMS)**,它允许开发者以 **声明式方式** 定义业务逻辑,使规则变更更加灵活,无需修改代码即可调整业务策略。本文将带你深入了解 Drools 的核心概念、基本配置、规则编写方式(DRL 和决策表),并展示如何在 Java 项目中集成 Drools,实现动态业务规则管理。原创 2025-05-27 14:33:31 · 1039 阅读 · 0 评论 -
当LLM遇上Agent:AI三大流派的“复仇者联盟”
最近,**Agent(智能体)**开始崛起,它能让AI像人一样自主决策、执行任务,甚至“组团打怪”。 先学LLM(毕竟它是“大脑”),再学Agent(让AI有“手”),最后碰行为智能(让AI有“身体”)。因为LLM是基于统计学习的,它“见过”珠穆朗玛峰是答案,但不“真正理解”为什么。LLM+Agent会像“钢铁侠+贾维斯”——你不用动手,AI自己搞定一切。这就是**Agent(智能体)**的威力——它让AI不仅会“说”,还会“做”。:AI的世界,没有“谁取代谁”,只有“谁和谁配合更好”。原创 2025-05-02 19:46:37 · 1128 阅读 · 0 评论 -
从零开始快速搞懂:机器学习中特征缩放与模型正则化
方法作用对象目标典型场景标准化数据均值为0,标准差为1规范化(Min-Max)数据缩放到 [0, 1]图像处理归一化(L2)数据矢量单位化文本TF-IDFL1正则化模型权重产生稀疏权重特征选择(如金融风控)L2正则化模型权重抑制大权重值通用场景(默认选择)关键区别:数据调整关注输入特征,而正则化约束模型内部参数。实践中,二者常结合使用(如标准化+L2正则化)。通过理解这些概念,你可以在不同场景下更灵活地优化模型!🚀。原创 2025-05-01 16:52:09 · 656 阅读 · 0 评论 -
使用 LLM助手进行 Python 数据可视化
通过本文的两个应用场景,我们展示了如何借助 AI 助手高效地创建基于 Python 代码的交互式和吸引人的数据可视化。这些技巧无疑将加速您的数据科学项目工作流程,将自定义可视化参数的负担留给 AI 助手。希望这些方法能为您的项目带来启发!原创 2025-04-27 21:08:09 · 727 阅读 · 0 评论 -
构建企业级知识图谱:JanusGraph与Gremlin实战指南
本文深入探讨如何利用JanusGraph与Gremlin构建可扩展的知识图谱系统,结合金融风控与供应链管理的实际场景,提供从数据建模到查询优化的完整解决方案。通过对比Neo4j等同类产品,分析分布式图数据库的核心优势,并给出技术选型建议。文中包含实战代码、性能调优技巧与架构设计思路,帮助开发者快速掌握图数据库在复杂关系分析中的应用。本文从理论到实战,为企业级知识图谱建设提供可复用的技术方案与选型思路,助力开发者应对复杂关系分析的挑战。属性(Property)**为核心模型,天然适合表达实体间的复杂关系。原创 2025-04-21 16:11:36 · 1508 阅读 · 0 评论 -
从零构建机器学习流水线:Dagster+PyTorch实战指南
网络架构设计"""用户流失预测模型"""nn.Linear(input_dim, 128), # 输入层nn.ReLU(),nn.Linear(128, 64), # 隐藏层nn.ReLU(),nn.Linear(64, 1), # 输出层设计考量使用ReLU激活函数缓解梯度消失添加Dropout层防止过拟合采用Sigmoid输出适配二分类任务@job"""端到端机器学习流水线"""标准化流程:从数据摄入到模型部署的全生命周期管理高性能实现。原创 2025-04-16 09:41:55 · 1192 阅读 · 0 评论 -
从规则驱动到智能优化:OptaPlanner重塑制造业生产排程与供应链管理
OptaPlanner是一个用Java开发的开源约束求解器,专注于解决资源分配和任务调度的优化问题。它建立在Drools Planner的基础之上,但通过引入更多增强功能和改进,提供了一个更强大、更灵活的框架。OptaPlanner的核心目标是通过智能算法和灵活的配置,帮助开发者快速构建高效的优化解决方案。接下来,我们需要创建一个评分计算类来指导优化过程。@Override// 硬约束逻辑return 0;// 软约束逻辑return 0;原创 2025-04-15 19:32:37 · 1336 阅读 · 0 评论 -
PyTorch梯度:深度学习的引擎与实战解析
对于特殊运算,可使用# 前向计算:ReLU函数ctx.save_for_backward(input) # 保存输入用于反向计算# 反向传播:梯度计算input, = ctx.saved_tensors # 获取保存的前向输入grad_input[input < 0] = 0 # 负数区域的梯度置零梯度是深度学习的驱动力,PyTorch的自动微分系统让梯度计算变得简单直观。理解梯度的工作原理和计算方式,是掌握神经网络训练的关键。理解梯度的概念和作用掌握PyTorch中梯度计算的基本方法。原创 2025-04-14 19:44:16 · 894 阅读 · 0 评论 -
PyTorch核心函数详解:gather与where的实战指南
和作为PyTorch生态中的基石函数,在数据工程与模型开发中扮演着不可替代的角色。更高效地实现复杂数据操作优化模型推理与训练流程解决各类条件化数据处理难题掌握这两把利器,您将在PyTorch开发中如鱼得水!原创 2025-04-12 15:19:22 · 945 阅读 · 0 评论 -
PyTorch张量操作指南:cat、stack、split与chunk的实战拆解
函数核心作用维度变化输入要求torch.cat沿现有维度拼接不变各张量形状需匹配新建维度堆叠+1维所有张量形状完全相同按尺寸分割不变需指定分割尺寸或份数按数量均分不变总长度需可分配应用建议当需要合并同类数据且保留原始维度时用cat;若需扩展维度以表示批次或通道时用stack;对序列数据分段处理优先考虑split;均匀划分特征图或张量时选择chunk。掌握这些工具后,您将能更灵活地操控张量维度,适应复杂模型的构建需求!原创 2025-04-12 11:26:12 · 1907 阅读 · 0 评论 -
从质检到实验:Python三大T检验实战案例
T检验(Student’s t-test)是基于小样本均值差异总体标准差未知时(现实中的常见情况)样本量介于3-30之间的中小样本分析需要快速验证差异显著性的业务场景本文通过三个典型业务场景的系统演示,展现了T检验在工业质检、医学研究和用户运营中的实战价值。结合Python的强大计算能力和可视化库,数据分析人员可以快速完成从数据清洗、假设检验到结果解读的全流程工作。值得注意的是,在处理小样本数据时,建议始终进行正态性检验和方差齐性验证,这能有效提升分析结果的可靠性。原创 2025-04-10 21:21:58 · 1028 阅读 · 0 评论 -
PyTorch Tensor维度变换实战:view/squeeze/expand/repeat全解析
本文从图像数据处理、模型输入适配等实际场景出发,系统讲解PyTorch中viewsqueezeexpand和repeat四大维度变换方法。通过代码演示对比不同方法的适用性,助您掌握数据维度调整的核心技巧。原创 2025-04-10 20:36:42 · 736 阅读 · 0 评论 -
PyTorch张量范数计算终极指南:从基础到高阶实战
在深度学习领域,张量范数计算是模型正则化、梯度裁剪、特征归一化的核心技术。本文将以**20+代码实例**,深度剖析`torch.norm`的9大核心用法,并揭示其在Transformer模型中的关键应用场景。原创 2025-04-08 22:34:30 · 637 阅读 · 0 评论 -
Langflow提示词定制AI对话:零代码打造智能助手
无需写代码,跟着以下步骤,让你的AI学会灵活调用商品信息,秒变专业顾问!组件,搜索“customer-service”获取预置客服模板,一键生成带退货政策、尺码表等字段的对话流,省去从头编写的时间!通过提示词设计,你的AI不仅能“听懂”问题,还能“聪明”地调用业务数据,真正成为高效助手!:访问 Langflow官方文档,查看完整电商客服案例,5分钟搭建你的第一个智能助手吧!:在提示词中加入风格指令(如“口语化”“分点说明”),AI会更精准地理解你的需求!初始模板通常是通用回答,直接替换成你的定制模板即可。原创 2025-04-06 20:18:40 · 971 阅读 · 0 评论 -
在 Langflow 中构建灵活的自定义组件:从基础到高级实践
Langflow 的自定义组件系统为开发者提供了强大的扩展能力,通过合理的架构设计和严谨的类型管理,可以构建出既专业又易用的数据处理模块。无论是简单的文本转换还是复杂的机器学习工作流,都可以通过组合这些组件实现。建议结合项目需求逐步迭代组件功能,并善用社区资源和官方文档持续优化设计方案。原创 2025-04-05 17:19:51 · 2256 阅读 · 0 评论 -
Langflow深度解析:从核心概念到开发实践
Langflow通过可视化编程模型与模块化组件体系,大幅降低了AI应用开发门槛。低代码敏捷开发:拖拽式流程设计提升开发效率50%+深度可定制性:支持Python原生代码介入节点逻辑企业级扩展能力:REST API与日志监控满足生产级需求无论是个人开发者快速验证原型,还是团队构建复杂AI工作流,Langflow都提供了完整的解决方案。立即访问官方文档开启您的AI应用构建之旅!原创 2025-03-31 20:38:17 · 2092 阅读 · 0 评论 -
LangFlow系列:LangFlow快速入门示例
Langflow 是一个用于构建多智能体和 RAG 应用程序的新颖可视化框架。它是开源的,基于 Python,完全可定制,并且与大型语言模型和向量存储无关。其直观的界面使得对 AI 构建模块的轻松操作成为可能,使开发人员能够快速制作原型,并将他们的想法转化为强大的、现实世界的解决方案。Langflow 凭借其用户友好的界面和强大的功能,使开发人员能够快速制作原型并构建 AI 应用程序。无论您是经验丰富的 AI 开发人员还是刚刚起步,Langflow 都提供了将您的 AI 想法变为现实所需的工具。原创 2025-03-29 10:10:26 · 2617 阅读 · 0 评论 -
使用 PyTorch 构建问答系统的 Transformer 模型:从原理到实践
在自然语言处理领域,问答系统(QA)一直被视为衡量机器理解能力的"试金石"。自2017年Transformer架构横空出世,这一领域发生了翻天覆地的变化。本文将带您从零开始,使用PyTorch和Hugging Face生态系统构建一个完整的问答系统,并深入探讨如何通过自定义数据微调模型。我们还将通过一个医疗领域的实际案例,揭示模型优化的核心技巧。原创 2025-03-25 15:28:53 · 1142 阅读 · 0 评论 -
Pytorch系列教程:微调BERT实现命名实体识别
在 PyTorch 中对 BERT 进行微调以用于命名实体识别涉及一系列步骤,从加载预训练的 BERT 分词器和模型开始,到准备数据集、训练,最后使用训练好的模型来识别命名实体。有了合适的数据集和适当的模型调整,这种技术使你能够利用最先进的 NLP 架构应用于各种实际场景。原创 2025-03-20 11:45:33 · 1607 阅读 · 0 评论 -
PyTorch系列教程:使用预训练语言模型增强文本分类
预训练语言模型显著提高了文本分类系统的能力。通过利用PyTorch和Transformers,你可以有效地实现和实验最先进的模型,改进您的解决方案,以提供更准确和细致的结果。使用预训练模型进行文本分类为优化NLP解决方案打开了大门,这些解决方案可以应用于各种领域,如情感分析、垃圾邮件检测等。原创 2025-03-19 20:36:24 · 629 阅读 · 0 评论 -
使用python seaborn创建配对图:从核心概念到实战案例
通过灵活运用 Seaborn 的配对图功能,结合色系设计,可以高效揭示数据的多维特征和隐藏规律。原创 2025-03-18 21:01:52 · 1090 阅读 · 0 评论 -
PyTorch系列教程:基于LSTM构建情感分析模型
本文详细介绍了如何使用PyTorch和LSTMs构建情感分析管道的全过程,从环境设置到模型训练和评估。通过遵循本文的指导,读者可以掌握情感分析的基本技能,并为进一步的研究和开发打下坚实的基础。原创 2025-03-15 14:20:54 · 616 阅读 · 0 评论 -
PyTorch 系列教程:探索自然语言处理应用
使用PyTorch进行NLP提供了强大的工具,用于处理和从文本数据中提取洞察。通过设置基本的PyTorch环境并将其与transformers等库集成,你可以进行分词、嵌入并构建用于文本分析的模型。尽管本文涵盖了基础知识,但PyTorch的能力扩展到情感分析之外的复杂NLP任务,包括翻译和问答。我们希望这篇介绍能激发您的兴趣,并帮助你开始使用PyTorch进行强大的NLP项目。原创 2025-03-14 20:42:12 · 690 阅读 · 0 评论 -
PyTorch 系列教程:使用CNN实现图像分类
通过PyTorch和卷积神经网络,你可以有效地处理图像分类任务。借助PyTorch的灵活性,可以根据特定的数据集和应用程序构建、训练和微调模型。示例代码仅为理论过程,实际项目中还有大量优化空间。原创 2025-03-12 21:22:20 · 1466 阅读 · 0 评论 -
Pytorch系列教程:可视化Pytorch模型训练过程
深度学习和理解训练过程中的学习和进步机制对于优化性能、诊断欠拟合或过拟合等问题至关重要。将训练过程可视化的过程为学习的动态提供了有价值的见解,使我们能够做出合理的决策。训练进度必须可视化的两种方法是:使用Matplotlib和Tensor Board。在本文中,我们将学习如何在Pytorch中可视化模型训练进度。原创 2025-03-11 21:41:18 · 2060 阅读 · 0 评论 -
PyTorch系列教程:高效保存和加载PyTorch模型
在PyTorch中保存和加载模型可以很简单,但需要了解何时使用状态字典而不是整个模型。当你希望干净地存储参数值并保持代码效率时,请使用state_dicts进行保存和加载。只有在必要的情况下保留体系结构时才选择保存整个模型,并认识到所涉及的权衡。无论你是在训练阶段之间进行转换,还是在进行推理部署,PyTorch 的序列化和反序列化都能为你提供所需的必备工具。原创 2025-03-10 20:24:05 · 717 阅读 · 0 评论 -
PyTorch系列教程:编写高效模型训练流程
高效的训练循环为优化PyTorch模型奠定了坚实的基础。通过遵循适当的数据加载过程,模型初始化过程和系统的训练步骤,你的训练设置将有效地利用GPU资源,并通过数据集快速迭代,以构建健壮的模型。原创 2025-03-08 21:19:29 · 1861 阅读 · 0 评论 -
PyTorch系列教程:Tensor.view() 方法详解
这篇简明扼要的文章是关于PyTorch中的tensor.view()方法的介绍与应用,与reshape()方法的区别,同时给出示例进行详细解释。原创 2025-03-08 17:47:44 · 805 阅读 · 0 评论 -
快速掌握EasyOCR应用实战指南
本文解释了如何使用EasyOCR,这是一个强大而平易近人的OCR库,可以从各种图像格式中识别和提取文本。我们已经看到EasyOCR可以批量分析大量照片,处理噪声和灰度图像,支持80多种语言,并为已识别的文本返回边界框和置信度分数。EasyOCR以其简单有效的方法从照片中提取文本,具有高度的准确性,是图像文本识别的伟大工具。该库强大的算法和用户友好的界面使其成为需要快速处理大量文档和图像的公司和组织的完美选择。原创 2025-03-07 21:03:19 · 2040 阅读 · 0 评论