第五章、多维数据透视分析(1)

本文详细阐述了多维数据模型在商业智能分析中的重要性,包括模型的定义、创建方法、连接逻辑以及筛选器的作用。讨论了一对多关系在汇总计算中的最佳实践,并介绍了星型、雪花和星座模型在多表环境下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第五章、多维数据透视分析(1)
一、多维数据模型
1、多维数据概述

通过商业智能分析产出的分析成果被统称为商业智能报表,简称"BI报表”。日常生活中我们看到的由交互式数据图表界面构成的报表都是BI报表。

创建一个BI报表要先后使用ETL、DW、OLAP及数据可视化4个不同阶段的软件技术。其中OLAP技术是进行BI分析最为关键的步骤,在该步骤中主要完成两项任务(创建多维数据模型、创建针对度量的汇总计算规则)。


【多维数据模型中的维度在分析过程中代表业务角度。多维指的就是多个不同的业务角度。多维数据是用来映射多个不同业务角度的数据信息。】


2、多维数据模型概述

多维数据模型又被称为多维数据集或立方体,分析人员通过搭建多维数据模型的方法将多源数据连接为一个完整的数据集合以达到在不同数据源间共享彼此数据信息的目的。多维数据模型为进行多维数据透视分析提供完整数据信息,有了多维数据模型才能从多角度用数据全面映射业务问题的实际情况。

多维数据模型是将通过ETL技术提取到DW中的多源数据连接在一起构成的多表连接模型,其主要作用是在DW中的不同数据源间"搭桥”,让所有通过"桥梁”连接在一起的数据源能够共享彼此的数据信息,从而解决"信息孤岛"问题,为完成多维数据透视分析任务提供完整的数据集合。

搭建多维数据模型的过程称为建模。

在数据分析领域中有两类不同的建模工作:搭建多维数据模型。(下面只针对这一块)、搭建分析所需要的数学模型。

3、多维数据模型创建方法

创建多维数据模型的过程就是在多个不同数据表间进行连接的过程,而使用多维数据模型的过程,就是在多表连接环境上进行多维数据透视分析(在多个交叉维度下对度量进行汇总计算)的过程。

相邻两表间连接汇总计算的方法及逻辑。

分析人员需要使用公共字段在相邻两表间创建连接关系,其连接逻辑与表结构数据间进行横向合并的逻辑非常相似。两表间连接线两端的数字1代表一表,*符号代表多表。连接线中间的箭头符号称为筛选器,双向

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值