10、MySQL-索引

目录

1、索引概述

2、索引结构

2.1 BTree

2.2 B+Tree

2.3 Hash

3、索引分类

4、索引语法

4.1 创建索引

4.2 查看索引

4.3 删除索引

5、SQL性能分析

5.1 SQL执行频率

5.2 慢查询日志

5.3 profile详情

5.4 explain执行计划

6、索引使用

6.1 验证索引效率

6.2 最左前缀法则

6.3 索引失效情况

6.4 SQL提示

6.5 覆盖索引&连表查询

6.6 前缀索引

6.7 单列&联合索引

7、索引设计原则


1、索引概述

介绍:索引(index)是帮助MySQ高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引

优势:

  1. 提高数据检索的效率,降低数据库的IO成本
  2. 通过索引列对数据进行排序,降低数据排序的成本,降低CPN的消耗。

劣势:

  1. 索引列也是要占用空间的。
  2. 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE时,效率降低。

2、索引结构

MySQL的索引是在存储引擎层实现的,不同的存储引警有不同的结构,主要包含以下几种:

我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。

2.1 BTree

介绍:多路平衡查找树

以一颗最大度数(max-degree)为5(5阶)的BTree为例(每个节点最多存储4个key,5个指针):

知识小贴士: 树的度数指的是一个节点的子节点个数。                                                             

2.2 B+Tree

以一颗最大度数(max-degree)为4(4阶)的B+Tree为例:

相对于BTree区别:

  1. 所有的数据都会出现在叶子节点
  2. 叶子节点形成一个单向链表

MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能。

2.3 Hash

哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。

如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。

Hash索引特点

  1. Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,<,…)
  2. 无法利用索引完成排序操作
  3. 查询效率高,通常只需要一次检索就可以了,效率通常要高于B+Tree索引

存储引擎支持

  1. 在MySQL中,支持hash索引的是Memory引擎,而InnoD8中具有自适应hash功能,hash索引是存储引擎根据B+Tree索引在指定条件下自动构建的。

为什么InnoDB存储引擎选择使用B+ Tree索引结构?

  1. 相对于二叉树,层级更少,搜索效率高
  2. 对于BTree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低
  3. 相对Hash索引,B+Tree支持范围匹配及排序操作

3、索引分类

在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

聚集索引选取规则:

  1. 如果存在主键&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bbamx.

谢谢您

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值