本地缓存与分布式缓存如何协作?高并发场景下的性能优化秘籍

在现代互联网系统中,性能优化是永恒的主题。无论是秒杀活动、实时推荐还是高频接口调用,都需要极低的响应时间和强大的并发处理能力。而缓存作为性能优化的核心手段,通常分为本地缓存分布式缓存两种形式。

本地缓存运行在应用进程内,访问速度极快,但受限于单机内存容量;分布式缓存运行在独立的服务节点上,支持跨实例共享数据,但因网络开销存在一定的延迟。那么,在实际项目中,如何让本地缓存和分布式缓存协同工作,从而在性能和扩展性之间找到最佳平衡点?

下面,我们一起来看看本地缓存与分布式缓存如何协作?


一、本地缓存与分布式缓存的协作模式

本地缓存和分布式缓存各有优劣,通过合理的协作模式,可以充分发挥两者的优势:

  1. 第一级:本地缓存

    • 本地缓存存储在应用进程内,直接访问内存,延迟极低。

    • 适合存储高频访问的小型数据集(如热点数据)。

  2. 第二级:分布式缓存

    • 分布式缓存运行在独立的服务节点上,支持跨实例共享数据。

    • 适合存储大规模数据集或需要持久化的数据。

  3. 协作流程

    • 读操作

    • 写操作

    1. 更新数据库后,删除本地缓存和分布式缓存中的旧数据。

    2. 下次读取时重新加载最新数据。

    1. 首先尝试从本地缓存获取数据。

    2. 如果本地缓存未命中,则从分布式缓存获取数据。

    3. 如果分布式缓存也未命中,则从数据库加载数据,并依次写入分布式缓存和本地缓存。


二、实际案例分析

案例 1:电商平台的商品详情页缓存

某电商平台的商品详情页需要快速加载商品信息,但由于商品数量庞大,直接访问数据库会导致性能瓶颈。为此,平台采用了本地缓存(Caffeine)和分布式缓存(Redis)的协作模式,显著提升了页面加载速度。

代码示例:

import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import redis.clients.jedis.Jedis;

import java.util.concurrent.TimeUnit;

publicclass ProductCache {
    private Cache<String, String> localCache; // 本地缓存
    private Jedis redisClient;      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值