在现代互联网系统中,性能优化是永恒的主题。无论是秒杀活动、实时推荐还是高频接口调用,都需要极低的响应时间和强大的并发处理能力。而缓存作为性能优化的核心手段,通常分为本地缓存和分布式缓存两种形式。
本地缓存运行在应用进程内,访问速度极快,但受限于单机内存容量;分布式缓存运行在独立的服务节点上,支持跨实例共享数据,但因网络开销存在一定的延迟。那么,在实际项目中,如何让本地缓存和分布式缓存协同工作,从而在性能和扩展性之间找到最佳平衡点?
下面,我们一起来看看本地缓存与分布式缓存如何协作?
一、本地缓存与分布式缓存的协作模式
本地缓存和分布式缓存各有优劣,通过合理的协作模式,可以充分发挥两者的优势:
-
第一级:本地缓存
-
本地缓存存储在应用进程内,直接访问内存,延迟极低。
-
适合存储高频访问的小型数据集(如热点数据)。
-
-
第二级:分布式缓存
-
分布式缓存运行在独立的服务节点上,支持跨实例共享数据。
-
适合存储大规模数据集或需要持久化的数据。
-
-
协作流程
-
读操作:
-
写操作:
-
更新数据库后,删除本地缓存和分布式缓存中的旧数据。
-
下次读取时重新加载最新数据。
-
首先尝试从本地缓存获取数据。
-
如果本地缓存未命中,则从分布式缓存获取数据。
-
如果分布式缓存也未命中,则从数据库加载数据,并依次写入分布式缓存和本地缓存。
-
二、实际案例分析
案例 1:电商平台的商品详情页缓存
某电商平台的商品详情页需要快速加载商品信息,但由于商品数量庞大,直接访问数据库会导致性能瓶颈。为此,平台采用了本地缓存(Caffeine)和分布式缓存(Redis)的协作模式,显著提升了页面加载速度。
代码示例:
import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import redis.clients.jedis.Jedis;
import java.util.concurrent.TimeUnit;
publicclass ProductCache {
private Cache<String, String> localCache; // 本地缓存
private Jedis redisClient;