Mobile-Former: Bridging MobileNet and Transformer 新的网络结构

本文介绍了一种结合MobileNet与Transformer优势的新结构——Mobile-Former,该结构在保持低计算成本的同时实现了局部与全局特征的有效融合,特别适用于语义分割任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在看论文时,发现了一个比较好的论文,大家在语义分割上面可以借鉴一下的。

这种结构利用了 MobileNet 在局部处理和 Transformer 在全局交互方面的优势。并且该bridge可以实现局部和全局特征的双向融合。 与最近在视觉Transformer上的工作不同,Mobile-Former 中的Transformer包含非常少的随机初始化的token(例如少于 6 个token),从而导致计算成本低。这种结构,我们可以沿用到语义分割神经网络中。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值