在看论文时,发现了一个比较好的论文,大家在语义分割上面可以借鉴一下的。
这种结构利用了 MobileNet 在局部处理和 Transformer 在全局交互方面的优势。并且该bridge可以实现局部和全局特征的双向融合。 与最近在视觉Transformer上的工作不同,Mobile-Former 中的Transformer包含非常少的随机初始化的token(例如少于 6 个token),从而导致计算成本低。这种结构,我们可以沿用到语义分割神经网络中。
在看论文时,发现了一个比较好的论文,大家在语义分割上面可以借鉴一下的。
这种结构利用了 MobileNet 在局部处理和 Transformer 在全局交互方面的优势。并且该bridge可以实现局部和全局特征的双向融合。 与最近在视觉Transformer上的工作不同,Mobile-Former 中的Transformer包含非常少的随机初始化的token(例如少于 6 个token),从而导致计算成本低。这种结构,我们可以沿用到语义分割神经网络中。