在神经网络中,我们知道输入层的节点个数在就是输入数据个特征(feature)个数,在隐藏层,节点的个数也代表着数据在经过处理之后新”提取“出来的数据特征(feature),一个隐藏层的节点个数越多,意味着这一层所提取的新特征越多。用下面这个图片说明
上图中输入层的有两个节点,表示只有两个特征输入神经网络中,经过第一个隐藏层处理之后,变成了四个新特征(因为隐藏层有四个节点),最后再对这四个新特征处理判断最终的结果作为最终的预测结果输出。
再比如下面这张图片,它是用于人脸识别的模型CNN。在layer1的时候,有24个特征,每一个特征基本都是表示一个不同形状和方向的斑点。在layer2中,有32个新特征,每一个新特征表示人脸的不同部位。
而在上面的layer1和layer2中,这些小格子之所以能够表示不同的特征,也就是它们之所以不同,是因为它们的参数不同(W和b)