神经网络的权重初始化为什么要随机

在神经网络中,我们知道输入层的节点个数在就是输入数据个特征(feature)个数,在隐藏层,节点的个数也代表着数据在经过处理之后新”提取“出来的数据特征(feature),一个隐藏层的节点个数越多,意味着这一层所提取的新特征越多。用下面这个图片说明

imgimg

上图中输入层的有两个节点,表示只有两个特征输入神经网络中,经过第一个隐藏层处理之后,变成了四个新特征(因为隐藏层有四个节点),最后再对这四个新特征处理判断最终的结果作为最终的预测结果输出。

再比如下面这张图片,它是用于人脸识别的模型CNN。在layer1的时候,有24个特征,每一个特征基本都是表示一个不同形状和方向的斑点。在layer2中,有32个新特征,每一个新特征表示人脸的不同部位。

imgimg

而在上面的layer1和layer2中,这些小格子之所以能够表示不同的特征,也就是它们之所以不同,是因为它们的参数不同(W和b)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nine_mink

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值