通俗理解BN(Batch Normalization)

1. 深度学习流程简介

1)一次性设置(One time setup)
- 激活函数(Activation functions)

​ - 数据预处理(Data Preprocessing)

​ - 权重初始化(Weight Initialization)

​ - 正则化(Regularization:避免过拟合的一种技术)

​ - 梯度检查(Gradient checking)

2)动态训练(Training dynamics)
- 跟踪学习过程 (Babysitting the learning process)

​ - 参数更新 (Parameter updates)

​ - 超级参数优化(Hyperparameter optimization)

​ - 批量归一化(BN:Batch Normalization:解决在训练过程中,中间层数据分布发生改变的问题,以防止梯度消失或爆炸、加快训练速度)
3)评估(Evaluation)
​ - 模型组合(Model ensembles)

​ (训练多个独立的模型,测试时,取这些模型结果的平均值)

神经网络学习过程本质就是为了:学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低,所以需要使用输入数据归一化方法,使训练数据与测试数据的分布相同。

2. 激活函数(Activation Functions)

总结:

1)使用ReLU时,使Learning Rates尽量小

2)尝试使用Leaky ReLU/Maxout/ELU

3)可以使用tanh,但期望不要太高

4)不要使用sigmoid

** 3. 数据预算处理(Data Preprocessing)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nine_mink

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值