频率分析:分析静息态在不同频率下数据的情况
连续数据经过FFT后,得到更详细的数据频率图,但只有1个
分段后的每一段数据经过FFT,再进行平均叠加。
FFT结果是对称的,且FFT的输出在频域中是周期性的。对于一个实数信号,其频谱是共轭对称的。因此,我们只需要分析FFT结果的前半部分来获取信号的所有频率成分,所以第NFFT/2+1点的频率值是Fs/2。
**实信号以fs为采样速率的信号的区间末端是fs/2**,这是因为实信号的频谱是对称的,且最高频率成分不会超过采样频率的一半。这是由奈奎斯特定律决定的,该定律指出,为了从采样信号中完全恢复原始信号,采样频率至少应该是信号中最高频率成分的两倍(fs>2f)。
对于实信号而言,由于其频谱是对称的,因此只需要考虑正频率部分即可。
NFFT 进行fft之后数据的点数,NFFT越大,数据越精细化。
数据经过FFT后的幅值A * 2 / N_data(时域数据长度)才是正确幅值。
针对静息态数据睁眼和闭眼的分段,对睁眼和闭眼分别打上开始和结束marker,再根据marker把数据分为睁眼和闭眼两个数据。
关于FFT(快速傅里叶变换):
一维数据的数据点数接近于2的幂指数时,处理时间更快:
x = rand(2000,1)
tic
y1 = fft(x);
toc
tic
y2 = fft(x,2048);
toc
叠加平均(时域和频域)都是为了降噪,叠加平均与时域分析处理方式一样。
频率分析:
不去找不同的频率点下,通过点对点的方式找到差异明显的频率点,但是频段的划分依旧按照经典文献的划分方式。