脑电:频域分析(静息态)

频率分析:分析静息态在不同频率下数据的情况

连续数据经过FFT后,得到更详细的数据频率图,但只有1个

分段后的每一段数据经过FFT,再进行平均叠加。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

FFT结果是对称的,且FFT的输出在频域中是周期性的。对于一个实数信号,其频谱是共轭对称的。因此,我们只需要分析FFT结果的前半部分来获取信号的所有频率成分,所以第NFFT/2+1点的频率值是Fs/2。

‌**实信号以fs为采样速率的信号的区间末端是fs/2**‌,这是因为实信号的频谱是对称的,且最高频率成分不会超过采样频率的一半。这是由奈奎斯特定律决定的,该定律指出,为了从采样信号中完全恢复原始信号,采样频率至少应该是信号中最高频率成分的两倍(fs>2f)。

对于实信号而言,由于其频谱是对称的,因此只需要考虑正频率部分即可。

NFFT 进行fft之后数据的点数,NFFT越大,数据越精细化。

数据经过FFT后的幅值A * 2 / N_data(时域数据长度)才是正确幅值。

针对静息态数据睁眼和闭眼的分段,对睁眼和闭眼分别打上开始和结束marker,再根据marker把数据分为睁眼和闭眼两个数据。

关于FFT(快速傅里叶变换):
一维数据的数据点数接近于2的幂指数时,处理时间更快:

x = rand(2000,1)
tic
y1 = fft(x);
toc
tic
y2 = fft(x,2048);
toc

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

叠加平均(时域和频域)都是为了降噪,叠加平均与时域分析处理方式一样。

频率分析:

不去找不同的频率点下,通过点对点的方式找到差异明显的频率点,但是频段的划分依旧按照经典文献的划分方式。

Matlab中fft函数详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值