论文单张图像深度图
3D效果
作者来自弗吉尼亚理工学院、国立清华大学和 Facebook,作者是从 单张 RGB-D 图像生成 3D 照相 (从单张图像到深度图再到3D效果),效果炫酷、惊艳,代码已开源 ,https://github.com/vt-vl-lab/3d-photo-inpainting
项目主页:https://shihmengli.github.io/3D-Photo-Inpainting/
代码测试环境:windows10
pytorch1.4
torchvision 0.5.0
python3.7
CUDA:10.1
cuDNN7.6
找来一张图片放入image文件夹下如下:
搭建好环境后执行 python main.py --config argument.ymlt即可,大概2-3分钟即可计算出结果。
使用论文中moon图片计算的结果,模拟镜头晃动、zoom-in 效果,毫无违和感。
原图 计算的Depth图 3D效果
其他图测试:每个图需要2分钟的时间,可以看到其深度图不太精细,毕竟只有单幅图像的深度估计。
ECCV 2020 NeRF测试;能够看出其深度图在细节处更加优秀,也可以理解毕竟它是由有多张图像计算得到并合成为3D效果