R语言-几种处理重复ID的方法

一、 概述

重复,特别是针对一些样本名称的重复问题的处理,是我在进行生信分析时经常遇到的。一种常见的解决策略是先找到重复之处,然后去重。但如果我们想要保留全部的重复ID呢?

一个简单的例子
生成一个非常简单的带重复的序列:

r$> data = c("a", "b", "c", "d", "a")                                                                                   

r$> data                                                                                                                
[1] "a" "b" "c" "d" "a"

这里a 重复了。

二、去重

通常采用的两种方法,如下:

1. 保留唯一值

r$> unique(data)                                                                                                        
[1] "a" "b" "c" "d"
# 或者
r$> data[!duplicated(data)]                                                                                             
[1] "a" "b" "c" "d"

2. 完全去重

r$> tb = table(data)                                                                                                    
r$> tb[tb > 1]                                                                                                          
a 
2 
r$> data[!data %in% names(tb[tb > 1])]                                                                                  
[1] "b" "c" "d"

三、如何保留信息又能看出重复

去重意味着数据的丢失,这种丢失在实际工作中有可能不能容忍。虽然是同样的ID,但它有可能关联多种可能的事件。例如,一个肿瘤患者,它可以有肿瘤和正常两种组织的样本,这可能写在不同的行。亦或者肿瘤样本有不同的位置来源的信息等等,但共用一个样本ID。

解决的思路是对重复ID添加标记,可以是前缀或者后缀,这样既能视觉上识别,也能够通过编程的手段识别或者后续对前后缀裁剪。后缀才容易操作,更为推荐

下面我们来引入两种方法:

1. ave()函数

r$> ave(data, data, FUN = function(i) paste0(i, '_', seq_along(i)))                                                     
[1] "a_1" "b_1" "c_1" "d_1" "a_2"
  • 此处先对同名ID进行分组,然后利用函数分别添加数字后缀。

2. make.unique()函数

仅标记出第二次及以后出现的ID,这样能保留大部分的数据不做改动。

R自带了make.unique()解决这个问题!

r$> make.unique(data)                                                                                                   
[1] "a"   "b"   "c"   "d"   "a.1"

r$> make.unique(data, sep = "_")                                                                                        
[1] "a"   "b"   "c"   "d"   "a_1"
<think>好的,我现在需要回答用户如何在R语言中删除数据框中的重复。用户提到了几个引用,我需要先仔细看看这些引用内容,确保回答准确。 首先,引用[1]提到使用duplicated()函数配合!符号来获取非重复,示例代码是df_unique <- df[!duplicated(df), ]。这应该是一个基础的方法,适用于简单情况。记得duplicated()默认是检查所有列,所以如果用户想基于特定列去重,可能需要调整参数。 接下来,引用[3]同样提到了duplicated()函数,并提到检查重复记录的逻辑。这里可能需要补充说明如何处理重复记录,比如保留第一个还是最后一个出现的重复。例如,使用fromLast参数可以改变判断顺序。 然后,引用[4]介绍了dplyr包的distinct()函数。这个方法更高级,适合在数据处理的管道操作中使用。需要说明distinct()的用法,比如如何指定列,以及是否保留所有列还是只保留去重的列。这里要注意,distinct默认保留所有列,但可以通过参数调整。 引用[2]则是一个总结性的内容,提到几种常用方法,但具体方法可能需要结合前面引用的内容。用户可能需要多种方法的选择,比如根据不同的需求选择基础函数或dplyr包。 用户的问题是如何用R语言去除数据框中的重复,所以需要分步骤说明不同的方法,并比较它们的优缺点。同时,用户提供的引用中有提到duplicated()和distinct()两种主要方法,需要详细展开。 可能需要注意的点: 1. 使用base R的duplicated()方法,以及如何调整参数。 2. 使用dplyr的distinct(),并说明需要安装和加载包。 3. 如何处理特定列的重复,而不仅仅是所有列。 4. 是否保留第一次还是最后一次出现的重复。 5. 示例代码的正确性,确保用户能够直接复制使用。 还需要生成相关问题,可能涉及性能比较、处理大数据集时的效率,或者如何根据条件删除重复等。 现在整理回答的结构: 1. 方法一:使用duplicated()函数,分情况讨论基于所有列或指定列。 2. 方法二:使用dplyr包的distinct()函数,同样分情况讨论。 3. 可能提到其他方法,如unique()函数,但引用中没有提到,需要确认是否在引用内容中存在。根据引用,可能不需要提及。 4. 每种方法给出代码示例,并说明注意事项。 5. 相关问题部分,考虑用户可能进一步的问题,如性能、优化、应用场景等。 检查是否有遗漏的引用内容,比如引用[3]提到检查重复记录,可能在回答中提到检查步骤,但用户问题主要是删除,所以可能简要带过。 最后确保回答符合系统级指令:内公式正确,独立公式单独,中文回答,生成相关问题,引用标识正确。</think>在R语言中删除数据框重复主要有以下两种常用方法: ### 方法一:使用base R的`duplicated()`函数 1. **基于所有列去重** 直接判断整是否重复保留首次出现的: ```r df_unique <- df[!duplicated(df), ] ``` 2. **基于指定列去重** 例如根据`id`和`name`列判断重复: ```r df_unique <- df[!duplicated(df[, c("id", "name")]), ] ``` 3. **保留最后出现的重复** 通过`fromLast`参数反向判断: ```r df_unique <- df[!duplicated(df, fromLast = TRUE), ] ``` ### 方法二:使用`dplyr::distinct()` 1. **安装并加载包** ```r install.packages("dplyr") library(dplyr) ``` 2. **删除所有列重复** ```r df_unique <- df %>% distinct() ``` 3. **根据指定列去重并保留所有列** ```r df_unique <- df %>% distinct(id, name, .keep_all = TRUE) ``` ### 方法对比 | 方法 | 优点 | 局限性 | |------------|--------------------------|-------------------------| | `duplicated()` | 无需安装额外包 | 语法相对复杂 | | `distinct()` | 语法简洁,支持管道操作 | 需要加载`dplyr`包 | 例如要基于`id`列去重并保留最后出现的记录: ```r df[!duplicated(df$id, fromLast = TRUE), ] ``` 这种方法通过向量化操作提高了执效率[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值